首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
超高层建筑施工周期长,结构的竖向变形累积是设计和施工中主要考虑因素之一,竖向构件的压缩变形通常由弹性、收缩和徐变变形引起.以上海中心大厦为工程背景,分析了CEB-FIP、ACI及PCA中建议的混凝土材料时变特性预测模型及适用性.根据实际施工进度建立上海中心大厦结构有限元分析模型,得到采用三种预测模型计算的施工全过程及结构封顶后的长期竖向变形,分析各预测模型计算的变形特点及其差别.根据实测温差计算温度变形,将竖向变形有限元分析结果与长期监测值进行对比.结果表明,采用CEB建议的材料预测模型,在考虑温度作用的情况下其竖向变形计算值与实测值大小、趋势及温度升降趋势均较为吻合,说明季节温差对竖向累积变形的影响较为明显.  相似文献   

2.
对宁波新世界广场5号地块稀疏外框柱超高层塔楼分别采用一次加载模型、分层加载模型、构件施工时间差模型进行了考虑材料时变效应的施工模拟分析,分析了不同荷载施加方式对核心筒剪力墙和框架柱竖向变形、竖向变形差及杆件内力等的影响。研究表明,施工过程中荷载施加方式对结构内力和变形影响较大,结构设计时应根据结构特点选取合适的计算模型进行计算;收缩徐变引起的混凝土累积竖向变形占竖向构件总变形比例较大,施工阶段核心筒收缩徐变变形占总变形比例达45%;施工过程中由荷载施加方式和材料时变效应对结构造成的不利影响,可在构件设计阶段采用强度包络设计方法或施工阶段采取补偿变形差的方式来予以考虑。  相似文献   

3.
超高层结构竖向变形及差异问题分析与处理   总被引:2,自引:0,他引:2  
依据欧洲规范EC2关于混凝土弹性模量变化、徐变和收缩的规定,考虑施工顺序加载、混凝土徐变收缩、竖向构件压应力差异、施工过程中构件长度的调整等因素,结合屋顶高381m的南京紫峰大厦超高层结构,分析计算了超高层结构中组合柱与芯筒剪力墙的竖向变形及差异。结果表明,结构封顶后半年时,结构中部的型钢混凝土组合柱会产生最大80mm左右的竖向变形,芯筒剪力墙会产生最大70mm左右的竖向变形;组合柱与芯筒墙的最大竖向变形差可达12mm左右,发生在结构中部偏上。合理安排施工顺序可以使得竖向构件变形差在伸臂桁架中产生的内力较小。  相似文献   

4.
根据CEB-FIP 1990规范中关于混凝土收缩、徐变的规定,按照施工顺序建模加载,考虑混凝土收缩徐变、施工标高调整、伸臂桁架连接固定时间、竖向钢构件预调整量等因素,结合结构高度580 m的上海中心大厦超高层建筑结构,分析计算了超高层结构中巨型柱与核心筒剪力墙的竖向变形及差异.分析表明,在重力荷载作用下,上海中心塔楼结...  相似文献   

5.
采用逐层建立结构有限元模型,按照不同混凝土构件在计算时刻的刚度组集结构总刚,将混凝土收缩和徐变效应等效为构件节点力,分析研究了混凝土框架柱竖向变形,研究得出,施工过程、混凝土收缩徐变、不同施工周期均对混凝土框架柱的竖向变形有影响。  相似文献   

6.
高层建筑施工过程较长,混凝土徐变、收缩等时间效应对高层建筑的竖向变形影响较大。基于欧洲规范CEB-FIP 90,分析了混凝土收缩、徐变效应与相对湿度、构件尺寸、含钢率、混凝土加载龄期、混凝土强度等级等因素的关系。为准确得到高层建筑逐层施工、逐层找平过程中的变形,采用SAP2000对南宁天龙财富中心高层建筑进行考虑收缩、徐变效应的施工模拟分析。结果表明:上部楼层混凝土收缩、徐变效应导致的变形占竖向变形的比例较大。为减小构件竖向变形差对水平构件的影响,根据变形补偿的思想计算了各层竖向构件的下料预留长度。  相似文献   

7.
超高层建筑施工周期较长,施工过程中结构时变、材料时变、荷载时变等将对结构受力性能产生影响.为对超高层结构施工过程进行有效监控和分析,以上海中心大厦实际施工过程为例展开研究.建立了考虑施工过程的有限元模型,同时对施工过程进行了长期监控;采用现场监测和数值模拟计算结果进行比较,通过调整有限元计算模型来预测后续施工过程中的结构状态.研究结果表明:自振频率识别值比有限元结果偏小,混凝土材料时变对竖向变形及构件内力影响明显,考虑季节温差的竖向变形计算结果与实测数据较为吻合.  相似文献   

8.
上海中心大厦在长期荷载作用下结构竖向构件间的差异变形会在水平构件中产生较大的次内力。利用MIDAS软件的施工过程模拟功能,得到竖向构件在不同施工阶段的内力情况。通过混凝土B3模型,根据内力计算得到竖向变形。并将竖向变形施加到ETABS整体模型中的相应构件中,考察由于竖向构件之间的差异变形在相应的水平构件中产生次内力情况。在分析的过程中,比较了不同的水平构件连接方案对结构次内力的影响。分析结果表明:随着时间的推移,构件的竖向变形逐渐扩大,竖向差异变形在水平构件产生较大的次内力,工程设计中应该考虑此因素对结构的影响。图11表5参9  相似文献   

9.
杭州国际博览中心物业塔楼为钢-混凝土混合结构,施工过程中存在明显的结构竖向变形累积问题。运用MIDAS软件对结构进行了阶段施工仿真分析,根据结构的设计要求定义各施工阶段的材料参数、几何参数、荷载边界条件等,考虑施工过程中混凝土的徐变收缩效应,研究了在竖向荷载作用下结构体系的竖向变形。分析结果表明,整体模型与施工阶段模型的分析结果存在较大差异,在施工过程中应考虑混凝土的时变特性和阶段施工对结构的影响;钢-混凝土组合柱与核心筒剪力墙均存在着较大的竖向变形差;桁架部分底层柱在不同施工阶段下的荷载作用响应变化明显;桁架部分南端柱与北端柱间的竖向位移差较大,施工过程中该部分桁架的安装应该受到重视。  相似文献   

10.
在超高层结构施工过程中,材料的时变特性和其他荷载等因素是导致竖向构件变形差异的主要原因。以南宁华润中心东写字楼超高层项目为工程背景,运用MIDAS Gen软件对项目进行施工模拟分析。由于钢管混凝土柱中混凝土处于密封状态,从而收缩徐变受到抑制,计算时考虑组合材料的收缩徐变得不到合理的结果。考虑钢管混凝土柱中混凝土的收缩徐变,利用双单元法对钢管混凝土柱进行施工模拟分析,并和换算截面法考虑收缩徐变和换算截面法不考虑收缩徐变分析的结果进行对比,分析三个模型的合理性,进而为钢管混凝土结构施工模拟分析提供参考。  相似文献   

11.
超高层建筑塔楼施工中存在的较大技术难点是结构竖向变形差的调整。以上海汇丰银行大厦为背景,研究了在竖向重力荷载作用下,钢-混凝土混合结构的外围巨型柱与核心筒之间的竖向变形差。分析表明,整体结构模型与施工阶段模型的分析结果存在着较大的差异,在实际运用中应采用考虑混凝土时变特性的施工阶段模型;施工速率对结构竖向变形的影响不大,可以忽略不计;结构中刚度很大的桁架层对减小巨型柱与核心筒之间的竖向变形差作用显著。最后根据仿真分析的结果,并考虑了施工中的标高补偿之后,确定了符合实际施工情况的构件预抛高值。从而规避了施工质量风险,达到了设计预期要求。  相似文献   

12.
海南大厦主楼为位于高地震区的复杂超限超高层建筑,主楼高为198.6m,地下4层,地上46层,结构体系采用了钢管混凝土柱钢框架-钢筋混凝土核心筒结构体系。参考欧洲规范EC2关于混凝土弹性模量变化、徐变和收缩的时变效应的规定,采用SAP2000软件,建立了考虑施工过程模拟有限元模型,分析了外框架柱与核心筒的竖向变形及差异。同时对比一次性加载、不考虑混凝土时变效应的施工模拟、考虑混凝土时变效应的施工模拟三种分析中的变形差异,可知结构的非线性弹性变形约占总变形量的50%左右。此外分析了伸臂桁架、防屈曲支撑在考虑施工过程、混凝土时变效应下的内力情况,表明斜杆在恒加活荷载作用下由于墙柱竖向变形的差异产生了较大的内力,在设计时应当予以重视。  相似文献   

13.
上海环球金融中心施工竖向变形分析   总被引:2,自引:2,他引:0       下载免费PDF全文
上海环球金融中心是世界上最高的建筑之一,施工过程中结构竖向变形累积问题尤为突出,有必要对其进行研究。建立了适于结构施工模拟的精细化有限元模型,综合时变结构离散分析法与龄期调整有效模量法,实现了超高层结构施工全过程分析;将整个结构按照施工过程划分成一系列材料参数、几何参数、荷载边界条件不同的平衡体系;通过对各平衡体系的有限元求解,实现了考虑徐变效应的施工全过程模拟,获得结构各施工阶段的竖向变形、层间压缩量以及框筒内外相对竖向变形,分析了施工过程中上海环球金融中心竖向变形。将模拟结果与一次性加载和不考虑徐变的施工模拟结果对比表明:上海环球金融中心变形计算应考虑施工过程和徐变效应的影响;计算结果与实测结果吻合较好,证明了建议方法的可行性。图12表3参12  相似文献   

14.
基于B3模型的竖向构件差异变形分析   总被引:1,自引:0,他引:1  
为研究巨型框架伸臂核心筒结构中由收缩和徐变引起的巨柱和核心筒的竖向差异变形,基于B3收缩徐变模型,采用应变增量法进行MATLAB编程,模拟荷载逐层施加的实际施工过程。对某一巨型框架伸臂核心筒结构进行了研究,考虑施工过程、混凝土收缩和徐变影响,对高层混凝土结构构件在竖向荷载作用下的竖向变形进行了计算;计算构件在楼板施工前后巨柱和核心筒的弹性、非弹性缩短以及竖向差异变形;进行了差异缩短变形分析,采用逐层修正法进行补偿。结果表明:考虑重力荷载、混凝土收缩和徐变时,巨柱和钢筋混凝土筒由收缩和徐变产生的非弹性变形占总变形的509/6以上,且该比例随时问呈增大趋势;巨柱和核心筒的收缩变形远小于徐变变形,收缩和徐变变形最终趋于一定值;楼板施工结束时竖向变形近似相等的构件,在楼板施工后一定时期的竖向差异变形很大;若顸层楼板施工结束时荷载全部施加完毕,则楼板施工后的最大竖向变形值出现在中间某一层;对于有具体要求的特殊结构,采用逐层修正法可降低差异变形在伸臂桁架中引起的附加内力。  相似文献   

15.
任瑞  刘冰 《结构工程师》2013,29(2):56-62
分析了混合结构体系超高层建筑在施工期间和使用阶段的竖向变形问题。采用CEB-FIP(1990)规范中混凝土收缩/徐变模型,计算了钢管混凝土柱和钢筋混凝土核心筒间的竖向变形差异,并分析了竖向变形差对关键构件内力的影响。计算中考虑了筒体先于外框柱施工、混凝土材料的收缩徐变、施工过程找平调整等因素的影响。结果表明,结构封顶一年后外框柱和核心筒最大竖向变形分别为50 mm(51层)和55 mm(51层),最大竖向变形差为12.9 mm(68层),同时由于竖向变形差引起的伸臂桁架次内力增量较小,结构具有足够的安全度。  相似文献   

16.
依据欧洲规范EC2关于混凝土弹性模型、收缩、徐变随时间变化规定,考虑施工顺序加载、竖向构件压应力差异、伸臂桁架后连接、下料长度调整等因素,结合某超高层建筑结构,实现了施工全过程模拟,获得各施工阶段外框架柱和核心筒剪力墙的竖向变形量及差异,对施工过程中关键构件的承载力进行验算,同时比较了后连接方案对水平伸臂桁架内力的影响。分析结果表明:在超高层设计时必须考虑混凝土收缩徐变等非荷载作用下的变形,竖向构件应考虑竖向变形而产生的压缩量进行预调整,采用后连接的施工措施可以减小水平伸臂桁架的内力。  相似文献   

17.
由于采用钢管混凝土框架-钢筋混凝土核心筒的混合结构体系,天津市泰安道五号院超高层结构竖向变形差问题需要进行精细化分析。通过采用施工精确模拟方法,分别建立施工正装分析法以及施工倒拆分析法的施工过程有限元模型,其中考虑施工过程中混凝土的收缩徐变特性。对此有限元模型进行分析,总结了施工各阶段结构不同竖向构件的变形规律以及变形差规律,为施工中竖向变形的控制提供依据。  相似文献   

18.
考虑组合结构体系超高层建筑在施工期间的竖向压缩变形,通过Midas/gen软件建立有限元模型,进行施工期间危险工况验算分析,计算中考虑了筒体先于外框柱施工、混凝土材料的收缩徐变、施工过程中结构找平、风荷载、地震荷载等因素的影响。通过验算施工过程中结构竖向位移,得出竖向位移最大点位置,能够反馈给设计单位以便于进行进一步深化设计;通过建立危险施工工况有限元模型,得出结构层间位移变化,从而考虑设计加强措施。  相似文献   

19.
采用CEB-FIP(1990)规范中的混凝土收缩徐变模型,考虑含钢率、套箍效应对混凝土收缩徐变的影响,计算了某超高层巨型混合结构竖向构件的竖向变形,分析弹性模量发展对竖向构件变形的影响,并研究竖向变形差对关键构件的内力影响。为实现在设定阶段竖向构件达到设计标高,对楼层标高预留高度和竖向构件下料预留长度的控制方法进行了研究。进一步提出减小竖向构件竖向变形差的措施,并通过算例验证了其有效性。研究表明,混凝土弹性模量发展对竖向构件变形影响不大;而混凝土的收缩徐变对超高层混合结构的变形及内力影响较大,应以考虑了混凝土收缩徐变的结构模型作为地震分析的初始态对关键构件进行校核;在带钢管混凝土柱的超高层巨型混合结构中,控制钢管混凝土柱压应力水平适当大于钢筋混凝土核心筒的压应力水平,可有效降低混凝土收缩徐变引起的竖向变形差及附加内力。  相似文献   

20.
以珠海铁建大厦为研究对象,建立了框架–核心筒结构有限元模型,对整个结构的施工过程划分了施工段,采用CEB-FIP(2010)模型考虑混凝土的收缩徐变作用,用精确模拟法进行施工过程力学分析,结果表明,混凝土收缩徐变对柱底轴力影响不大,对核心筒墙体以及外框架柱的竖向变形影响很大,超高层建筑中的钢管混凝土柱或者型钢混凝土柱也...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号