首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张睿  胡振光 《湿法冶金》2023,(3):263-268
研究了用P204、P507萃取分离赤泥浸出液中的铁、钙,考察了萃取剂的体积分数、水相pH、萃取温度、萃取时间和相比VO/VA对铁、钙萃取分离的影响,确定了2种萃取剂的最佳萃取试验条件,对比了萃取性能。结果表明:有机相组成为40%P204+60%磺化煤油时,在水相pH=1.4、萃取温度50℃、萃取时间15 min、相比VO/VA=1/1条件下,Fe3+萃取率为94.29%,Ca2+萃取率为5.07%,P204可较好萃取分离铁和钙;有机相为30%P507+70%磺化煤油时,在水相pH=2.5、萃取温度40℃、萃取时间15 min、相比VO/VA=3/1条件下,Fe3+萃取率可达99.67%,Ca2+萃取率为1.95%;P204、P507都能从赤泥浸出液中萃取分离铁、钙,相较而言,P507萃取分离性能好于P204。  相似文献   

2.
采用皂化的P204+磺化煤油体系共萃铬、铁,选择性反萃分离铬、铁工艺,从电镀污泥硫酸浸出液中回收富集铬.考察皂化率、P204浓度、料液初始pH值、萃取时间、温度、相比等因素对于萃取效果的影响,考察反萃剂组成、浓度、相比等因素对反萃效果的影响.结果表明:P204皂化率及浓度是影响铬的萃取率重要因素.在萃取有机相组成为30 %P204+70 %磺化煤油,皂化率为70 %,料液pH=2.42,VO/VA=1/1,萃取温度28 ℃,振荡时间5 min条件下,经6级逆流萃取达到平衡之后,出口水相铬浓度为0.9 mg/L左右,铬萃取率为99.99 %.采用2段反萃工序有效的分离铬铁:采用2 mol/L硫酸反萃,相比VO/VA=5/1,温度32 ℃,振荡时间5 min,经过3级逆流反萃,铬反萃率为97.5 %,铬浓度富集到29.5 g/L,铁浓度为10 mg/L;反萃铬后负载有机相再用氢氧化钠溶液反萃铁.   相似文献   

3.
利用二氧化锰矿粉和硫酸的氧化作用浸出锰金属,再通过调节浸出液pH除大部分的铁,然后在不同pH条件下采用P204萃取剂两步法除钙铁和回收锰,最后经硫酸反萃取后浓缩结晶制备高纯硫酸锰。最佳工艺条件为:在硫酸浓度100g/L、液固体积质量比6mL/g、渣料质量比8、浸出温度90℃、浸出时间180min,锰浸出率可达93.5%;调节浸出液pH=4.0除大部分的铁,除铁率达到了84.8%,溶液浓缩定容至20mL,调节浸出液pH=1.6,加入体积比1∶1、皂化率30%的P204和磺化煤油萃取剂,萃取10min,钙、铁萃取率分别达到了91.2%和80.5%,再次调节浸出液至pH=3.5,加入体积比2∶1、皂化率30%的P204和磺化煤油萃取剂,萃取10min,锰萃取率最高达92.9%,最后经硫酸反萃取后浓缩结晶制备高纯硫酸锰,锰的总回收率达到了82.6%,溶液经浓缩结晶后得到的高纯硫酸锰纯度达到了99.78%,含铁0.0012%、钙0.0023%。  相似文献   

4.
从含钒石煤酸浸液中溶剂萃取钒的试验研究   总被引:3,自引:0,他引:3  
朱军  郭继科  马晶  齐建云 《湿法冶金》2011,30(4):293-297
研究了从某含钒石煤酸浸液预处理后的溶液中溶剂萃取。用P204-TBP-磺化煤油组成的有机相萃取,用硫酸溶液反萃取,用酸性铵盐沉淀钒。试验考察了有机相组成、水相平衡pH、萃取剂浓度、相比、振荡时间等因素对钒萃取率的影响,确定了萃取工艺条件为:有机相组成为12.5%P204+5%TBP+82.5%磺化煤油,Vo∶Va=2∶1,三级逆流萃取。结果钒萃取率大于99.00%;用硫酸溶液经三级逆流反萃取,钒反萃取率大于97.00%;制备的V2O5产品纯度大于98.00%。  相似文献   

5.
研究了用酸性膦类萃取剂Cyanex272从硫酸镍钴锰溶液中萃取分离铝,考察了体系pH、萃取剂浓度、萃取剂皂化率和相比对萃取的影响。结果表明:对于Al~(3+)质量浓度2~3 g/L、主金属离子质量浓度70 g/L左右、且不含铁、锌、钙等杂质的原液,用皂化率为40%的25%Cyanex272+75%磺化煤油有机相,在萃取时间4 min、V_o/V_a=1/1条件下进行萃取,铝的单级萃取率为72%,5级萃取率为75%,去除效果较好,且主金属离子损失率较低。  相似文献   

6.
研究了用P204从盐酸体系中萃取铝,考察了萃取时间、萃取温度、料液pH、氯化铝质量浓度、相比(V_o/V_a)、P204浓度对萃取的影响。结果表明:在P204浓度1.5 mol/L、料液pH=3.0、Al~(3+)质量浓度低于30 g/L、相比(V_o/V_a)=2/1、常温下萃取5 min条件下,铝的一级萃取率达70%以上;P204对Al~(3+)的最大饱和萃取率为85.92%,反萃取后P204可循环使用。  相似文献   

7.
研究了用Cyanex272从高纯硫酸镍溶液中萃取分离痕量钴,考察了料液pH、Cyanex272体积分数、料液温度、相比(V_o/V_a)对萃取分离钴的影响,分析了萃取反应的热力学。结果表明:采用Cyanex272作为萃取剂可去除高纯硫酸镍溶液中的痕量钴;在料液pH=5.5、温度60℃、相比(V_o/V_a)=1/1条件下,用10%Cyanex 272+10%TBP+80%磺化煤油进行一级萃取,可将溶液中钴质量浓度降至0.5 mg/L以下;萃取反应为吸热反应,升温有利于钴的萃取分离。  相似文献   

8.
研究了用N235从高浓度盐酸溶液中萃取铼及用NaOH溶液反萃取铼,考察了萃取剂组成、相比、两相接触时间对萃取和反萃取的影响。结果表明:对于铼质量浓度38.4 mg/L、HCl浓度5.5 mol/L的溶液,用5%N235+1.5%仲辛醇+93.5%磺化煤油进行萃取,在V_o/V_a=1/10、两相接触时间1 min条件下经3级逆流萃取,铼萃取率达97%;对于负载铼质量浓度540 mg/L的有机相,用清水洗涤后,在V_o/V_a=15/1、接触时间30 s条件下,用浓度为1.5 mol/L的NaOH溶液进行反萃取,铼的单级反萃取率为99.5%。铼的分离效果较好。  相似文献   

9.
研究了从粒度小于20μm、污染较重、不适宜复活的废催化剂中回收稀土。试验结果表明:控制浸出温度60℃、盐酸浓度3.33mol/L、浸出时间3h,废催化剂中91.3%~94.5%的镧、铈被浸出;用50%P507+50%磺化煤油,在温度25℃、萃取相比V_o∶Va=2∶1、萃取时间30min条件下从稀土浸出液中萃取镧铈,镧铈萃取率为94.5%;对负载有机相,采用1.8mol/L盐酸反萃取,控制相比V_o∶V_a=1∶3,稀土镧铈的反萃取率为98.1%;对反萃取液用草酸进行沉淀,沉淀物灼烧,获得工业级氧化镧铈产品。  相似文献   

10.
研究了采用t-BAMBP+磺化煤油萃取体系,从含铷钾矿石浸出液中萃取分离铷和钾,考察了萃取剂浓度、萃取相比(V_o/V_a)、溶液碱度、萃取时间对铷、钾萃取率的影响。结果表明:在t-BAMBP浓度1.2 mol/L、V_o/V_a=3/2、溶液中[OH~-]为0.9~1.0 mol/L、萃取时间3 min条件下,经过4级逆流萃取,铷萃取率达99.52%,钾萃取率为29.90%,铷、钾分离效果较好。  相似文献   

11.
铜再生灰浸出液中含有Cu、Zn、Fe、Cd等多种有价金属。采用“Lix984+磺化煤油”有机相从铜再生灰浸出液中萃取分离铜,并采用中和除铁法对萃余液中的铁沉淀分离。探究了萃取级数、萃取相比O/A、萃取剂浓度、水相初始pH、萃取时间对Cu2+与其它金属离子萃取分离的影响,以及溶液pH、反应温度、反应时间对萃铜余液除铁过程的影响。萃铜试验优化条件为:萃取级数2级、萃取相比3:4、萃取剂浓度15%、萃取时间2 min、萃取初始水相pH=1.5。除铁试验最佳参数为:中和终点pH=4.0、反应温度40℃、陈化时间1 h。在最佳条件下,Cu的萃取率为99.12%,与Zn、Cd、Fe的分离系数分别为1 317.9、1 178.7和651,实现Cu与其它金属的有效分离。萃铜余液除铁率达99.67%,除铁后液满足锌电解液对Fe浓度的要求。  相似文献   

12.
研究了高炉瓦斯灰氨法浸出液萃取锌的工艺过程。最佳浸出工艺条件为:浸出温度为30℃,浸出时间为60min,固液比为1∶5,搅拌速度为450r/min,氯化铵和氨水均为2.5mol/L。浸出液萃取锌的最佳试验条件为:P204为萃取剂,磺化煤油作为稀释剂,P204体积分数为25%,萃取时间为40min,萃取温度为35℃,锌浓度为1.820g/L,浸出液初始pH值为9.5,A/O相比为1/1。在这些条件下,锌的萃取率可达97.41%。  相似文献   

13.
研究了用季胺盐协同体系(P507+N263)从溶液中萃取镧。结果表明:2种萃取剂混合后对镧有正协同萃取作用,最大协同系数达3.25;在V(P507)/V(N263)=1/1、料液pH=3.5、V_o/V_a=3/4、振荡时间7 min条件下,镧萃取分配比为0.94;在稀土浓度0.52 mol/L、振荡时间7 min、V_o/V_a=1/1条件下,镧铈分离系数达14.8;负载有机相用5 mol/L盐酸反萃取,镧可完全被转入溶液;混合萃取剂的协同萃取能力优于2种萃取剂单独使用时的萃取能力。  相似文献   

14.
研究了用溶剂萃取法从水解废酸液中分离钪、钛。结果表明:P204+煤油组成的单元萃取体系对钪的萃取能力较差,添加TBP后萃钪能力有显著提升,但三相问题依然存在;有机相中添加3%~5%的苯乙酮,组成三元协萃体系,可有效防止第三相生成,而且水相和有机相分相速度快且界面清晰。优化的钪、钛分离工艺条件为:V_a/V_o=5/1,逆流2级萃取,萃取时间10min,萃取剂为12%P204+5%TBP+3%苯乙酮+80%煤油。优化工艺条件下,钪萃取率平均为91.7%,钛萃取率平均为0.69%,钪、钛分离效果较好。  相似文献   

15.
用P204从废钒催化剂中萃取钒   总被引:1,自引:1,他引:0       下载免费PDF全文
用P204+TBP+磺化煤油体系从废钒催化剂还原酸浸液中萃取回收钒,考察萃取相比(O/A)、P204浓度及待萃液初始pH对萃取钒的影响。结果表明,P204萃取钒最优条件为:萃取剂组成20%P204+10%TBP+70%磺化煤油、相比O/A=2、料液初始pH=2.2、萃取5 min。在此优化条件下,VO2+萃取率可达98.73%。用1.5mol/L硫酸反萃6min,VO2+反萃率达93.35%,且制得V2O5产品达GB 3283-1987冶金99级V2O5的标准。  相似文献   

16.
锂云母酸法浸出液含有大量杂质金属,使用传统化学沉淀法会引起大量产物损失。为了降低浸出液除杂过程中的产物损失,使用溶剂萃取法进行萃取除杂工艺研究。通过对不同萃取剂组合萃取除杂效果的研究,确定使用P204作为萃取剂。考察了萃取过程中不同因素的影响,并使用H2O2预氧化水相里的Fe2+,强化萃取效果。结果表明:在有机相组成为30%P204+70%磺化煤油、料液初始pH为2.4、相比O/A=1、萃取时间10min和振荡频率300 r/min的单级萃取最佳条件下,铁除杂率为99.89%、铝除杂率为31.23%、锂和铷的萃取率分别为7.63%和14.85%。相比于化学沉淀法,锂和铷的回收率得到了30%左右的提高。  相似文献   

17.
湿法炼锌净化钴渣选择性浸出锌后浸出渣的酸浸液中杂质含量较高,影响钴的回收。研究了采用P204萃取剂从该酸浸液中去除锌、镉、铁等杂质,考察了酸浸液pH、P204体积分数、萃取时间、相比对萃取除杂效果的影响。结果表明:在酸浸液pH为3.5、P204体积分数为10%、相比(V_o/V_a)为1/1、萃取时间为15 min、4级萃取条件下,锌、镉、铁萃取率均超过97%,钴损失率不足5%,除杂效果较好,萃余液杂质含量低,可进一步回收钴。  相似文献   

18.
采用高酸浸出———铁粉还原浸出———富集———除铁———还原萃取工艺从海绵铁中回收镓。酸浸条件为起始酸度180g/LH2SO4、最终pH0 2、温度80℃。中浸采用铁粉调节pH4 2,经过3次循环,镓浸出率92 6%。以10%P204+90%磺化煤油+1 5%YW-100为萃取剂,水相与有机相相比为5∶1,pH1 5,镓的萃取率为99%。用6mol/L分析纯盐酸作反萃剂,反萃级数为3级,经氨水沉淀得到产物镓的纯度为97%。  相似文献   

19.
以制备钛白粉后形成的酸性钛白废液作为研究对象,采用氯化钠(NaCl)和二(2-乙基己基)磷酸酯(P204)协同萃取回收钛白废液中钒.考察了溶液初始pH值、NaCl添加量、振荡速率、振荡时间等因素对钒萃取率的影响.结果表明:在有机相组成为20%P204+80%磺化煤油,相比为1 ∶ 1,溶液初始pH值为2.3,NaCl添...  相似文献   

20.
研究了用P204作萃取剂从不锈钢酸洗污泥浸出液中萃取分离重金属,考察了萃取剂皂化率、振荡时间、稀释剂、相比、料液初始pH、温度等对重金属萃取效果的影响。结果表明:在有机相皂化率75%、相比1/1、料液初始pH=3.0、以260#溶剂油为稀释剂、萃取5 min条件下,铬、镍、铁萃取率分别达87.93%、14.19%和59.83%,分离系数β(Cr/Ni)=44.12,β(Cr/Fe)=4.90,铬与镍、铁得到分离;用稀硫酸反萃取铬,效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号