首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activity of Pt catalysts supported on Al2O3 modified with various acid–base additives has been investigated for oxidation of NO to NO2. Although Pt dispersion was changed by the additives, there was no clear effect of Pt dispersion on the catalytic activity. The measurement of solid acid–base properties of the modified Pt/Al2O3 indicated that the NO oxidation activity increased by the increase of surface density of strong acid sites and decreased by the increase of basic sites. It was suggested that platinum on the acidic supports keeps its highly active metallic state for NO oxidation, while the formation of nitrate/nitrite on the basic supports inhibits the reaction on the Pt surface.  相似文献   

3.
The effect of NO x storage on the soot combustion activity when alkaline- and alkaline/earth-containing model DPNR catalysts are used is investigated in this work. The influence of different experimental conditions (NO concentration, temperature, and particulate loading) is addressed and discussed in relation to the NO x storage efficiency and soot oxidation activity as well.  相似文献   

4.
Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.  相似文献   

5.
The partial oxidation of methane (POM) to synthesis gas over SiO2-supported Rh and Ru catalysts was studied by in situ microprobe Raman and in situ time-resolved FTIR (TR-FTIR) spectroscopies. The results of in situ microprobe Raman spectroscopic characterization indicated that no Raman band of Rh2O3 was detected at 500°C over the Rh/SiO2 catalyst under a flow of a CH4/O2/Ar (2/1/45, molar ratio) mixture, while the Raman bands of RuO2 can even be detected at 600°C over the Ru/SiO2 catalyst under the same atmosphere. The experiments of in situ TR-FTIR spectroscopic characterizations on the reactions of CH4 over O2 pre-treated Rh/SiO2 and Ru/SiO2 catalysts indicated that the products of CH4 oxidation over Rh/SiO2 and Ru/SiO2 greatly depend on the concentration of O2– species over the catalysts. On the catalysts with high concentration of O2–, CH4 will be completely oxidized to CO2. However, if the concentration of O2– species over the catalysts is low enough, CH4 can be selectively converted to CO without the formation of CO2. The parallel experiments using in situ TR-FTIR spectroscopy to monitor the reaction of the CH4/O2/Ar (2/1/45, molar ratio) mixture over Rh/SiO2 and Ru/SiO2 catalysts show that the mechanisms of synthesis gas formation over the two catalysts are quite different. On the Rh/SiO2 catalyst, synthesis gas is mainly formed by the direct oxidation of CH4, while on the Ru/SiO2 catalyst, the dominant pathway of synthesis gas formation is via the sequence of total oxidation of CH4 followed by reforming of unconverted CH4 with CO2 and H2O. The significant difference in the mechanisms of partial oxidation of CH4 to synthesis gas over Rh/SiO2 and Ru/SiO2 catalysts can be well related to the difference in the concentration of O2– species over the catalysts under the reaction conditions mainly due to the difference in oxygen affinity of the two metals.  相似文献   

6.
7.
The effect of the addition of CeO2 or La2O3 on the surface properties and catalytic behaviors of Al2O3-supported Pd catalysts was studied in the steam reforming of methane. The FTIR spectroscopy of adsorbed CO and the Pd dispersion suggest the partial coverage of Pd0 by ceria or lanthana species. This could lead to the formation of an adduct MPd x O (M = Ce or La) at the surface of the metal crystallites. The addition of ceria or lanthana resulted in an increase of the turnover rate and specific rate for steam reforming of methane. One possible explanation if that the Pd0*Pdδ+O–M interfacial species (M = Ce or La) are oxidized by H2O or CO2, promoting the O* transfer to the metal surface. This could facilitate the removal of C* species from the metal surface, resulting in the increase of specific reaction rate and increase of the accessibility of CH4 to metal active sites.  相似文献   

8.
9.
Mechanistic aspects involved in the formation of N2 and of N2O during the reduction of NO, stored nitrites and stored nitrates in the presence of NO are investigated in this work by means of isotopic labeling experiments over a model PtBa/Al2O3 NSR catalyst. The reduction of gaseous labeled NO with unlabelled NH3 leads to the formation of N2O at low temperature (below 180 °C), and of N2 at high temperature. All N2 possible isotopes are observed, whereas only labeled molecules have been detected in the case of N2O. Hence the formation of nitrous oxide involves undissociated NO molecules, whereas that of N2 can be explained on the basis of the statistical coupling of 15N- and 14N-adatoms on Pt. However, due to a slight excess of the mixed 15N14N isotope, a SCR-like pathway likely operates as well. The reduction of the stored labelled nitrates is very selective to N2 and all isotopes are observed, confirming the occurrence of the recombination pathway. However also in this case a SCR-like pathway likely occurs and this explains the abundance of the 14N15N species. When the reduction of the stored nitrates is carried out in the presence of NO, this species is preferentially reduced pointing out the higher reactivity of gaseous NO if compared to the nitrates.  相似文献   

10.
The combustion of benzene was studied on Pt supported on V2O5–TiO2 samples containing different amounts of V2O5. Vanadium was highly dispersed as V4+ for low V2O5 loadings, forming a vanadia monolayer on titanium dioxide for a V2O5 concentration of about 5%wt. V2O5–TiO2 samples were more active than V2O5 and TiO2 single oxides, and the activity increased with the vanadia content. The platinum dispersion in Pt/V2O5–TiO2 catalysts increased with the V2O5 loading but the activity for the deep oxidation of benzene exhibited an opposite trend. Benzene combustion was a structure sensitivity reaction promoted on larger metallic Pt crystallites which were preferentially formed when the V2O5 content in the sample was decreased.  相似文献   

11.
Macro-porous monolithic γ-Al2O3 was prepared by using macro-porous polystyrene monolith foam as the template and alumina sol as the precursor. Platinum and potassium were loaded on the support by impregnation method. TG, XRD, N2 adsorption–desorption, SEM, TEM, and TPR techniques were used for catalysts characterization, and the catalytic performance of macro-porous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts were tested in hydrogen-rich stream for CO preferential oxidation (CO-PROX). SEM images show that the macropores in the macro-porous monolithic γ-Al2O3 are interconnected with the pore size in the range of 10 to 50 μm, and the monoliths possess hierarchical macro-meso(micro)-porous structure. The macro-porous monolithic catalysts, although they are less active intrinsically than the particle ones, exhibit higher CO conversion and higher O2 to CO oxidation selectivity than particle catalysts at high reaction temperatures, which is proposed to be owing to its hierarchical macro-meso(micro) -porous structure. Adding potassium lead to marked improvement of the catalytic performance, owing to intrinsic activity and platinum dispersion increase resulted from K-doping. CO in hydrogen-rich gases can be removed to 10 ppm over monolithic K–Pt/γ-Al2O3 by CO-PROX.  相似文献   

12.
The selective CO methanation (CO-SMET) process via Ru?CAl2O3 catalysts was investigated as a tool for complete CO removal in fuel processors, when the H2-rich gas so produced is employed for PEM-FCs applications to vehicles, boats, yachts and residential co-generators. CO-SMET seems, in fact, to be a good alternative to the most widely used CO preferential oxidation (CO-PROX) process. The performance of Ru-based catalysts on alumina carrier for efficient CO removal through CO-SMET was studied, exploring the role of two different Ru precursors (chloride and nitrate), and the doping effect of chloride and of Ru load (1%, 3% and 5%). First, two catalytic families (Ru?CAl2O3_Cl and Ru?CAl2O3_NO3) were prepared by incipient wetness impregnation of alumina powder synthesized via solution combustion synthesis, by varying the Ru load. Then, based on the best obtained results, a third catalytic family was prepared adding chloride to Ru?CAl2O3_NO3 catalysts by impregnation. The CO removal performance was determined at catalyst powder level in a fixed bed micro reactor. Better performances were exhibited when Ru was deposited from chloride precursor, but the post-addition of chlorine to fresh Ru?CAl2O3 catalysts prepared with nitrate precursor tremendously improved their selectivity toward CO methanation. In particular, with both 1% and 3% Ru?CAl_NO3 catalyst chlorine doped, complete CO conversion was reached in a proper temperature range where the CO2 methanation was suitably kept at a low acceptable level.  相似文献   

13.
14.
The influence of indium on the properties of Pt–Re/Al2O3 catalysts used in naphtha reforming is studied. The addition of indium to the Pt–Re/Al2O3 catalyst produces a big decrease of acidity. It also produces an inhibition of the metal function, i.e., dehydrogenation and hydrogenolysis activity. The reaction of n-C5 isomerization shows that indium addition decreases the total activity of the Pt–Re catalyst but increases the selectivity to the i-C5 isomers. The selectivity to low cost light gases (C1–C3) is particularly decreased. The reaction of n-C7 reforming showed that addition of indium increases the stability of the catalyst and the selectivity to aromatics, and decreases the production of light gases.  相似文献   

15.
16.
Infrared spectra of adsorbed CO have been used as a probe to monitor changes in Pt site character induced by the coking of Pt/Al2O3 and Pt–Sn/Al2O3 catalysts by heat treatment in heptane/hydrogen. Four distinguishable types of Pt site for the linear adsorption of CO on Pt/Al2O3 were poisoned to different extents showing the heterogeneity of the exposed Pt atoms. The lowest coordination Pt atoms (ν(CO) < 2030 cm−1) were unpoisoned whereas the highest coordination sites in large ensembles of Pt atoms (2080 cm−1) were highly poisoned, as were sites of intermediate coordination (2030–2060 cm−1). Sites in smaller two‐dimensional ensembles of Pt atoms (2060–2065 cm−1) were partially poisoned, as were sites for the adsorption of CO in a bridging configuration. The addition of Sn blocked the lowest coordination sites and destroyed large ensembles of Pt by a geometric dilution effect. The poisoning of other sites by coke was impeded by Sn, this effect being magnified for Cl‐containing catalyst. Oxidation or oxychlorination of coked catalyst at 823 K followed by reduction completely removed coke from the catalyst surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Catalysts of general formula, MoVAlO x were prepared with the initial elemental composition of 1:0.34:0.167 (Mo:V:Al) at a pH value in the range of 1–4. The elemental analysis showed that the final composition of the catalysts is pH dependant. The performance of the catalysts was tested for selective oxidation of ethane to give ethylene and acetic acid. While all of them were active for ethane oxidation with a moderate conversion, the catalyst prepared at pH 2 showed a highest activity with 23% ethane conversion and a combined selectivity of 80.6% to ethylene and acetic acid. The catalyst prepared at pH 4 was least selective to ethylene and acetic acid. Various techniques like powder XRD, SEM, Raman, UV–Vis and EPR were used to characterize the catalysts and to identify the active phases responsible for the selective oxidation of ethane. The powder XRD data showed that the catalysts prepared at pH 1 and 2 contain mainly of MoO3 and MoV2O8 along with traces of Mo4O11. The amount of MoO3 was slightly higher in the catalyst prepared at pH 1. However, the catalyst prepared at pH 3 contains mainly of MoV2O8 with no trace of MoO3. The catalyst prepared at pH 4 showed V2O5 as the major phase along with MoVAlO4 phase. The Raman data corroborated the XRD results. EPR and UV–Vis studies indicated the presence of traces of V4+ in pH 1 and 2 catalysts and significant amount of Mo5+ in all the catalysts. Thus, the high activity and selectivity to ethylene and acetic acid are attributed to the presence of MoV2O8 phase and other reduced species like Mo4O11 phase supported on MoO3. The presence of V and Mo ions in a partially reduced form seems to play a crucial role in the selective oxidation of ethane.  相似文献   

19.
The glycerol partial oxidation reaction over Pt/Al2O3 catalysts was studied under basic (NaOH/GLY molar ratio 4) and base-free conditions (NaOH/GLY molar ratio 0). Catalysts with small (2.95 nm) and large particle sizes (260.83 nm) were synthesized according to the use of different reducing agents, formaldehyde or sodium borohydride, and hydrazine, respectively. These different Pt particle sizes lead to a dramatic change in terms of activity, irrespective of the applied conditions. The biggest particles (i.e., 260 nm) seem to generate overoxidation products leading to a decrease in the carbon balance (to ~80%) while the smallest particles exhibit the highest initial glycerol transformation rate (i.e., ~10,000 mol h−1 molPt−1 under basic conditions at 60°C and ~2000 mol h−1 molPt−1 in the absence of a base at 100°C). In terms of selectivities, the main products are different as a function of the initial reaction conditions. For base-free conditions, the two main products are glyceraldehyde and glyceric acid with a sum of selectivities always larger than 80%. Under basic conditions, the major product is glyceric acid while no trace of glyceraldehyde is detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号