首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khan FK  Cassidy DT 《Applied optics》2011,50(24):4834-4843
We report on the spectral properties for above-threshold operation of broadly tunable, asymmetric multiple quantum well (AMQW), coupled-cavity InGaAsP/InP semiconductor diode lasers. We developed a traveling wave model to understand the mode selection that the lasers exhibit. We find that a weak, short external cavity (SXC) can be used to obtain single frequency operation on each longitudinal mode over the ~100 nm tuning range of the uncoated AMQW coupled-cavity lasers. We measured the spectral properties of AMQW coupled-cavity lasers with and without an SXC. In a synthesized optical coherent optical tomography application, the use of an SXC with an AMQW coupled-cavity laser reduces the coherence length and hence enhances the performance of the AMQW coupled-cavity laser for optical coherence tomography applications.  相似文献   

2.
A gain flattening coating was designed and fabricated to enhance the wavelength tuning for asymmetric multiple quantum well (AMQW) lasers. After coating, a nonlasing gap in the middle range of the lasing wavelengths, which might exist for AMQW lasers that are operated without an external cavity, was overcome and the total lasing range was increased. With the coating, the tuning range of an AMQW laser, as measured without an external cavity, was increased to 85?nm from 70?nm.  相似文献   

3.
The authors describe widely tunable coupled cavity semiconductor lasers with sub-microsecond switching times between modes over the operating range of ˜100 nm. With appropriate modulation of injection currents and time averaging of the output, these devices provide short coherence lengths and can be an excellent source for synthesised optical coherence tomography (OCT). The depth resolution was found to be ˜15 mm for a 100 nm wavelength tuning range centred at 1580 nm. High-output power and brightness together with a short coherence length confers on these asymmetric multiple quantum well (AMQW) C3 laser some advantages over conventional sources for OCT. Also, a rapid wavelength switching capability allows the AMQW C3 lasers to be used in real-time OCT and other applications needing wavelength agile sources.  相似文献   

4.
Abstract

A diffractive optical element (DOE) has been designed, fabricated and used in an external feedback configuration to set the wavelength of operation of uncoated Fabry-Pérot diode lasers. The DOE was designed to replace the conventional elements of an external feedback system, which are a collimating lens and grating in the Littrow configuration. The goal was to simplify use of the external cavity laser by replacing the lens and grating with a single optical element while maintaining the performance that is achieved with a grating and lens. Four DOEs were fabricated with two different focal lengths and two different reflectivities. DOE external cavity lasers were tested for maximum tunable range and stability of the wavelength of operation and compared with an external cavity laser based on a lens and grating in the Littrow configuration. A 40 nm tuning range was achieved with the DOE external cavity laser and this is comparable with the tuning range of the external cavity lasers based on a grating and collimating lens in the Littrow configuration.  相似文献   

5.
Duval M  Fortin G  Piché M  McCarthy N 《Applied optics》2005,44(24):5112-5119
We present a novel scheme of tunable semiconductor laser based on the use of a chirped grating in an external cavity. The chirped grating is fabricated using a simple holographic technique: two Gaussian beams having wavefronts with different radii of curvature are brought to interfere on a photoresist layer. The tuning properties of chirped gratings have been investigated with semiconductor lasers operated with an external cavity. With this type of grating positioned in Littrow configuration, the wavelength selection can be done by translating the grating without any need to rotate it. This cavity configuration provides a tunable output beam with an angle of propagation that is independent of the wavelength. The translation of chirped gratings was shown to tune a visible diode laser and an infrared diode laser over the same spectral band as the conventional tuning scheme where an unchirped grating is rotated.  相似文献   

6.
Interferometry associated with an external cavity laser of long coherence length and broad wavelength tuning range shows promising features for use in measurement of absolute distance. As far as we know, the processing of the interferometric signals has until now been performed by Fourier analysis or fringe counting. Here we report on the use of an autoregressive model to determine fringe pattern frequencies. This concept was applied to an interferometric device fed by a continuously tunable external-cavity laser diode operating at a central wavelength near 1.5 microm. A standard uncertainty of 4 x 10(-5) without averaging at a distance of 4.7 m was obtained.  相似文献   

7.
Heine FF  Huber G 《Applied optics》1998,37(15):3268-3271
By use of the reflection of an uncoated external etalon, a diode-pumped thulium-doped YAG microchip laser was forced into a single-frequency mode. The wavelength of the single-frequency radiation was tunable over 15 nm simply by translation of the etalon relative to the laser. Output powers of 45 mW were achieved in a monolithic setup that is insensitive to vibrations. The origin of the single-frequency oscillation is the wavelength-dependent reflection of the etalon, which is coupled back into the laser resonator. This method permits the combination of inherently stable, single-frequency resonator geometries such as microchips with laser materials that have broad tuning ranges.  相似文献   

8.
Wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser   总被引:1,自引:0,他引:1  
Dong B  Hu J  Liaw CY  Hao J  Yu C 《Applied optics》2011,50(10):1442-1445
An all-fiber passively wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser is presented. With a low insertion loss carbon nanotube based saturable absorber, C- and L-band tunable Q-switched lasers are achieved by tuning the transmission wavelength of one C-band tunable filter and the other L-band one, respectively. The threshold of the Q-switched operation is only 12.8 mW. The self-mode-locking effect on the Q-switching can be effectively reduced by introducing a spatial hole burning effect with two optical circulators. The tunable wavelength range of the Q-switching laser can be changed by inserting a variable optical attenuator in the laser cavity to tune the gain spectrum.  相似文献   

9.
An innovative non-mechanical and low power consumption tunable external cavity laser (ECL) using liquid crystal tuning elements is proposed. This contains a gain chip, a collimating lens, tuning elements and a partial-reflection mirror. The proposed tunable ECL can achieve both coarse tuning and fine tuning, and it is designed to lase at wavelength matching the International Telecommunication Union (ITU) channels, which is one of the important requirements in optical communication. The tuning elements include an ITU etalon, a liquid crystal Fabry–Pérot interferometer (LC-FPI) and a fine tuner. Only two parameters are required to tune the wavelength over the whole C-band, namely the voltage over the LC-FPI and the fine tuner. This high reliability cost-effective design proposes a theoretical tuning range of about 80?nm. The LC tuning elements including LC-FPI and fine tuner has been fabricated and tested.  相似文献   

10.
He Y  Orr BJ 《Applied optics》2001,40(27):4836-4848
High-quality single-longitudinal-mode (SLM) tunable signal radiation is generated by a pulsed optical parametric oscillator (OPO) pumped by a compact, inexpensive multimode laser. The OPO is based on periodically poled lithium niobate (PPLN) in a ring cavity that is injection seeded at its resonated signal wavelength by a single-mode tunable diode laser. Accurate control of the OPO cavity length and crystal temperature ensures a continuously tunable SLM signal output frequency range of >7.5 THz (>250 cm(-1)); the corresponding idler output remains multimode. High-resolution molecular spectra are recorded to verify OPO performance at wavelengths of ~1.55 mum. The observed signal optical bandwidth of 相似文献   

11.
Long-wavelength InGaAlAs-InP vertical-cavity surface-emitting lasers (LW-VCSELs) covering the wavelength range from 1.3 to 2.3 mum are presented. Furthermore, these lasers can be fabricated in a novel high-speed design-reducing parasitics to enable bandwidths in excess of 11 GHz at 1.55 mum. To the best of the authors' knowledge, this is the fastest 1.55 mum VCSEL ever presented. As a proof-of-concept one- and two-dimensional arrays have been fabricated with high yield. All devices use a buried tunnel junction for current confinement and a dielectric backside reflector with integrated electroplated gold-heatsink. This concept enables CW operation at room temperature with typical single-mode output powers above 1 mW. Both, wavelength range and modulation performance, together with VCSEL features such as operation voltage around IV and power consumption as low as 10-20 mW enable applications in tunable diode laser spectroscopy (TDLS) and optical data transmission. Error-free data transmission at 10 Gbit/s over 22 km which can be readily applied in uncooled coarse wavelength division multiplex passive optical networks is presented. A laser hygrometer using a 1.84 mum VCSEL demonstrates the functionality of TDLS systems with VCSELs.  相似文献   

12.
A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators.  相似文献   

13.
Novel GaInSbAs/GaSb multiple-quantum-well lasers operating near room temperature have been successfully used for tunable diode laser absorption spectroscopy in the vicinity of 2.35 mum. Continuous current tuning over a more than 150-GHz frequency range has been realized. Direct absorption measurements have been carried out on the R, R, R, and R lines of carbon monoxide. Traces of carbon monoxide at the level of 0.3 part in 10(6) in volume at 100 Torr could be detected by the low-frequency wavelength-modulation technique and an astigmatic multipass cell. These results show a potential use of these diode lasers in portable low-cost trace-pollutant sensors.  相似文献   

14.
Tunable laser diode system for noninvasive blood glucose measurements   总被引:2,自引:0,他引:2  
Optical sensing of glucose would allow more frequent monitoring and tighter glucose control for people with diabetes. The key to a successful optical noninvasive measurement of glucose is the collection of an optical spectrum with a very high signal-to-noise ratio in a spectral region with significant glucose absorption. Unfortunately, the optical throughput of skin is low due to absorption and scattering. To overcome these difficulties, we have developed a high-brightness tunable laser system for measurements in the 2.0-2.5 microm wavelength range. The system is based on a 2.3 microm wavelength, strained quantum-well laser diode incorporating GaInAsSb wells and AlGaAsSb barrier and cladding layers. Wavelength control is provided by coupling the laser diode to an external cavity that includes an acousto-optic tunable filter. Tuning ranges of greater than 110 nm have been obtained. Because the tunable filter has no moving parts, scans can be completed very quickly, typically in less than 10 ms. We describe the performance of the present laser system and avenues for extending the tuning range beyond 400 nm.  相似文献   

15.
We experimentally demonstrate a simple method for generating a multiwavelength Brillouin comb by utilizing a linear cavity of hybrid Brillouin-erbium fiber lasers (BEFLs). The optimization of Brillouin pump wavelength, power, and erbium gain played a significant role in determining the maximum number of Brillouin Stokes signals generated. Simultaneous and stable multiple-wavelength laser output of 22 lines with 10.88-GHz channel spacing has been obtained with good flatness. Various parameters such as 980-nm pump power, Brillouin pump wavelength, and Brillouin pump power that affect the performance of a multiwavelength BEFL system have been investigated. An analysis of the tuning range of the system is presented.  相似文献   

16.
The continuous tuning range of an external-cavity diode laser can be extended by making small corrections to the external-cavity length through an electronic feedback loop so that the cavity resonance condition is maintained as the laser wavelength is tuned. By maintaining the cavity resonance condition as the laser is tuned, the mode hops that typically limit the continuous tuning range of the external-cavity diode laser are eliminated. We present the design of a simple external-cavity diode laser based on the Littman-Metcalf external-cavity configuration that has a measured continuous tuning range of 1 GHz without an electronic feedback loop. To include the electronic feedback loop, a small sinusoidal signal is added to the drive current of the laser diode creating a small oscillation of the laser power. By comparing the phase of the modulated optical power with the phase of the sinusoidal drive signal using a lock-in amplifier, an error signal is created and used in an electronic feedback loop to control the external-cavity length. With electronic feedback, we find that the continuous tuning range can be extended to over 65 GHz. This occurs because the electronic feedback maintains the cavity resonance condition as the laser is tuned. An experimental demonstration of this extended tuning range is presented in which the external-cavity diode laser is tuned through an absorption feature of diatomic oxygen near 760 nm.  相似文献   

17.
Izawa J  Nakajima H  Hara H  Arimoto Y 《Applied optics》2000,39(15):2418-2421
The lasing performance of single-cavity and double-cavity Tm, Ho:YLF lasers was measured experimentally. The maximum, single-longitudinal mode output power for the double-cavity laser was 30 mW, whereas for the single-cavity laser it was 7 mW. We determined the frequency stabilities to be 600 Hz for a single-cavity laser and 300 Hz for a double-cavity laser, by measuring the fluctuation of a self-heterodyne beat signal for a 1.5-micros delay time over a 10-min integrated period. In addition, we obtained a 15-GHz frequency tuning range for the double-cavity laser by changing its cavity length under maximum stable conditions at room temperature.  相似文献   

18.
Liu B  Braiman Y 《Applied optics》2012,51(11):1816-1821
We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of ~10 nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm (~1 THz).  相似文献   

19.
G Guekos  D Syvridis 《Sadhana》1992,17(3-4):373-383
The paper reviews recent results obtained with diode lasers used in external hybrid cavities with frequency selective feedback. Such cavities attract continuing interest for several reasons. They generate a tunable single laser mode with very low linewidths (usually a few tens of kilohertz). Very wide discrete tunable ranges over 100 nm for Fabry-Perot type and over 200 nm for quantum well lasers are achieved. They can be made to oscillate in a tunable mode having the desired polarization state,TE orTM and, in some cases, simultaneously atTE andTM. This is done by designing a cavity that increases strongly theTM/TE intensity ratio and by using coatings on one laser facet that greatly lower bothTE andTM reflectivities. High-speed polarization switching in the gigahertz range is possible by inserting passive or active polarization selecting elements in the cavity. For all these reasons hybrid external cavities are attractive for applications in optical metrology, spectroscopy and optical communications. Moreover, the external cavity configuration allows the study of physical mechanisms in the laser diode by inducing on purpose phenomena that would have been otherwise impossible to achieve with free-running lasers.  相似文献   

20.
Begley DL  Martin D  Vivian B  Rice RR 《Applied optics》1986,25(21):3835-3837
Successful operation of a compact linear array external cavity laser exhibiting wavelength control of five (widely spaced) individual diode elements and phase-locked operation was demonstrated. The locked array output was tunable over a 15-nm range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号