首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
做出了10千兆赫微波频率下低噪声放大砷化镓场效应晶体管,使固体放大器频率范围比使用硅晶体管提高2~3倍。GaAs FET 最高振荡频率达30千兆赫,8千兆赫和16千兆赫下测得的功率增益分别为8分贝和3分贝,见图1。4千兆赫下噪声3分贝,低于迄今为止报导的晶体管噪声水平。此外,场效应晶体管噪声随频率的变化较小,8千兆赫下仅为5分贝,见图2。器件制于半绝缘 GaAs 衬底上的10~(17)厘米~(-3)掺硫外延薄膜上。外延层必须很薄(约0.3  相似文献   

2.
固体微波器件研究的最新和最重要的进展之一是研制出了中功率砷化镓肖特基势垒场效应晶体管(GaAsMESFET)。RCA 的研究工作已确认此种器件可用做中功率的放大器和振荡器。我们已做出9千兆赫下,输出功率高达1瓦,功率附加效率η=(P_(out)-P_(in))/P_(dc)为16%(线性增益为5.5分贝)的单元器件。4千兆赫下功率附加效率高达35%,9千兆赫下为21%的器件已经实现。另外,也研制出9.15千兆赫下输出功率  相似文献   

3.
现在,微波晶体管,硅双极晶体管已开始广泛地用来做4千兆赫下低噪声和功率等各种放大器。由于晶体管放大器和其他结构的放大器相比,具有许多优良的性质,可望研制在更高频率下具有低噪声,高增益、高输出功率等特性的晶体管。然而,硅双极晶体管的特性目前已大致接近其极限,作为其代替者,GaAs肖特基势垒场效应晶体管(GaAsSBEET或GaAsMESFET)近年来引起人们极大的注意。自Mead(1966)提出了GaAsFET,Hooper(1967)等人确定了其作为微波晶体管的可能性,到Drangeid(1970)等人试制了最高振荡频率为30千兆赫的器件,这段时间为该器件作为微波晶体管的试制期。到1972年,Liecht等人成功地制  相似文献   

4.
据讯,美国IBM研究实验室研制了一种在目前来说频率最高的高频晶体管化放大器和振荡器。为了获得14~18千兆赫下的性能,该实验装置应用了砷化镓肖特基势垒场效应晶体管。这些晶体管IBM公司称之为金属-半导体-场效应晶体管(MESFET),它们在15千兆赫下具有8分贝的增益。用这类晶体管制成的三级放大器在16.9千兆赫下的功率增益为6  相似文献   

5.
近年来,微波晶体管有了很大的发展,在4千兆赫下噪声系数为2.5分贝的双极晶体管和在8千兆赫下噪声系数为3分贝的砷化镓场效应晶体管已达到实用阶段。另外,在大功率晶体管方面,4千兆赫5瓦,3千兆赫10瓦的器件业已获得。这些器件在制造技术上都使用了接近极限的技术,器件的进步不仅取决于设计技术,还与工艺技术的进步关系极大。今后的微波晶体管的进展考虑非采用亚微米加工那样的新的制造技术不可。  相似文献   

6.
在12~20千兆赫的频率范围内研究了肖特基势垒栅砷化镓场效应晶体管。最大有用功率增益的测量表明,在这个范围内,器件具有比预期更高的增益。用带线技术制成了输出功率为4毫瓦的17千兆赫振荡器和功率增益为16分贝的四级14.9千兆赫放大器。  相似文献   

7.
本文介绍 X 波段砷化镓功率场效应晶体管(FET)的测量结果。这些器件是用简单的平面工艺制作的。多个单元并联的器件在9千兆赫下,输出功率大于1瓦,增益大于4分贝。4分贝增益下,最大输出功率在9千兆赫下为1.78瓦,在8千兆赫下为2.5瓦。8千兆赫下,器件功率附加效率为46%。  相似文献   

8.
最近,硅双极型晶体管在4千兆赫下输出功率可达5瓦。当前,由富士通研究所研制成功的,1974年在IEDM上发表过的大功率GaAsF-ET达到了8千兆赫下输出1.6瓦,10千兆赫下输出0.7瓦。这是最先突破X波段1瓦的三端固体器件。 1970年以后,小信号低噪声放大用GaAsFET获得了发展。以此为前提,人们想,用GaAs能不能制作大功率FET,成了1972年IMS(国际微波技术会议)上讨论的议题。但是,由于GaAs的热导率小,加上制造方法不成熟,真心实意要搞的人是极少的。那时,富士通已生产2千兆赫5瓦的硅双极型高频大功率晶体管(网状发射极),因而对硅双极管、硅场效应管、砷化镓双极管、砷化镓场效应晶体管、固体行波器件等  相似文献   

9.
砷化镓肖特基势垒栅场效应晶体管期待作为几千兆赫以上具有优良性能的微波放大器件,一些单位都在积极开展研究。然而目前只有少数的硅双极晶体管在6千兆赫以上实现了比较优良的性能,已有几家市售产品,然而考虑到将来砷化镓场效应晶体管大有希望,可能取而代之。另外,使用砷化镓场效应晶体管的各种微波仪器的研究也极其活跃起来,预计不久将来,使用砷化镓场效应晶体管的 X 波段低噪声放大器将实用化,它必将取代过去所用的低噪声行波放大器(TWT)。  相似文献   

10.
关于微波低噪声放大器,本文以使晶体管放大器的低噪声化的设计方法为中心,介绍各种低功率放大器及功率放大器的现状。微波低噪声放大器的现状图1就目前的各种微波放大器表示了它们的噪声系数及频率特性。双极晶体管放大器、隧道二极管放大器和参量放大器等是过去人们已热知的低电平工作的低噪声放大器,近几年来晶体管的性能惊人地提高,已出现了在4千兆赫下噪声系数3分贝左  相似文献   

11.
已经证明高频砷化镓场效应晶体管(GaAsFET)在微波频率下有非常低的噪声系数和高的功率增益。因此对通信和雷达应用的低噪声放大器和接收机来说它们是优秀的候选者。例如,在实验室已做出了在10千兆赫下噪声系数小于4分贝、增益超过10分贝的单级GaAsFET放大器(Liechti等人1972年,Baechtold等人1973年)。场效应晶体管的基本工作原理是由肖克莱(1952年)首先叙述的。他提出了以多数载流子流动为基础的作新型半导体放大器的器件,这种器件不像通常的晶体管那样以少数载流子为基础。肖克莱设想的场效应晶体管是一种包含一电流通路的半导体器件,这  相似文献   

12.
在一月份举行的日本电子通信学会半导体、晶体管研究会上,日本电气中央研究所发表了微波GaAsMESFET的研究结果.功率器件在6千兆赫下输出达25瓦,增益3分贝;低噪声器件在4千兆赫下噪声系数为0.7分贝,在12千兆赫下为1.68分贝.该所用内部连接的器件已实现了在6千兆赫下输出15瓦,为进一步提高输出功率,由提高集成度、增加FET的单位栅宽,即栅条长度而获得成功.为设计在10伏偏压下输  相似文献   

13.
本文叙述了微波低噪声双极晶体管最大可用功率增益计算的一种方法,即从器件的等效电路出发,通过数值求解得到器件的S参数,从而计算其功率增益。计算中考虑了内引线和封装所引入的一些寄生参量的影响。使用电子计算机进行计算。作为实例,给出了10千兆赫下工作的微波低噪声晶体管增益计算的一些结果,并对影响增益的某些因素进行了分析和讨论。  相似文献   

14.
多沟道面结型-栅极场效应晶体管及其优点,在1964年以隐栅场效应晶体管这个题目已被介绍过了。它包括垂直的和水平的沟道结构。它的发展为的是将场效应晶体管和双极晶体管的优点合并到同一器件中。水平沟道结构所具有的特性在功率管甚高频波段中是十分有用的;但对更高频率和更大功率领域,垂直沟道结构基本上则更为适合。然而,为了发展微波功率领域的这种结构,必须对其作一透彻的了解,以克服其缺点(即较高的栅电阻和微分漏电导等)。第一个问题的解决是将栅的几何形状加以修正,并且增加栅极的体内杂质浓度。第二个问题的解决是将源和漏的薄层电阻给以适当的梯度。于是,使用通常的工艺和普通的栅极精密度(但是要适当的栅极图形)已经得到1千兆赫以上的工作频率、f_(max)约为5千兆赫、频率-功率乘积约为5千兆赫·瓦的单片隐栅场效应晶体管。本文讨论这种器件的特点,并给出全套的实验结果。最后,对不久的将来可望实现,现在已经开始着手进行的功率范围1~2瓦、工作频率8千兆赫的器件作了概述。本文也讨论了接近隐栅场效应晶体管极限的预计结构。本文仅涉及隐栅场效应晶体管的实验部分。  相似文献   

15.
多沟道面结型-栅极场效应晶体管及其优点,在1964年以隐栅场效应晶体管这个题目已被介绍过了。它包括垂直的和水平的沟道结构。它的发展为的是将场效应晶体管和双极晶体管的优点合并到同一器件中。水平沟道结构所具有的特性在功率管甚高频波段中是十分有用的;但对更高频率和更大功率领域,垂直沟道结构基本上则更为适合。然而,为了发展微波功率领域的这种结构,必须对其作一透彻的了解,以克服其缺点(即较高的栅电阻和微分漏电导等)。第一个问题的解决是将栅的几何形状加以修正,并且增加栅极的体内杂质浓度。第二个问题的解决是将源和漏的薄层电阻给以适当的梯度。于是,使用通常的工艺和普通的栅极精密度(但是要适当的栅极图形)已经得到1千兆赫以上的工作频率、f_(max)约为5千兆赫、频率-功率乘积约为5千兆赫·瓦的单片隐栅场效应晶体管。本文讨论这种器件的特点,并给出全套的实验结果。最后,对不久的将来可望实现,现在已经开始着手进行的功率范围1~2瓦、工作频率8千兆赫的器件作了概述。本文也讨论了接近隐栅场效应晶体管极限的预计结构。本文仅涉及隐栅场效应晶体管的实验部分。  相似文献   

16.
简讯     
日本日立公司中央研究所最近研制出低噪声、高增益的砷化镓场效应晶体管。其最高振荡频率f_(max)为50千兆赫,4千兆赫下噪声系数N为2.6分贝,功率增益为20分贝。为研制该管,日立公司进行了五个方面的研究工作: (1)研究了场效应晶体管的设计理论和最佳设计; (2)研究了低损耗场效应晶体管的封装设计; (3)改进电极材料的组分以降低欧姆电阻; (4)为实现短栅所需的光刻工艺; (5)高质量的晶体外延生长。该器件已提供日本邮政省无线电研究实验室试用,用于通讯卫星毫米波中继设备的  相似文献   

17.
因为砷化镓场效应晶体管振荡器比其它类型的固态振荡器的噪声低,效率高而且设计灵活,所以在微波通信中非常适用。目前已有有关 C 频段和 X 频段的砷化镓场效应晶体管振荡器试验成功的报导。这些振荡器的输出功率均低于10O毫瓦,直流——射频变换效率低于20%。本设计采用共源砷化镓场效应晶体管振荡器结构。振荡器是一个 C 频段的集成化振荡器。在振荡器中有一个最佳外反馈网络,共源场效应晶体管片安装在氧化铝陶瓷基片上。振荡器的微带线和作反馈用的电容器串联连接。这种没有采取稳定措施的振荡器,在6千兆赫可产生400毫瓦的功率,效率为38%。这可与同一场效应晶体管片作放大器用时产生的最大输出功率相比拟。  相似文献   

18.
本文叙述的固体微波放大器所用的基本元件是肖特基势垒场效应晶体管,称为金属—半导体场效应晶体管(MESFET),在高达12千兆赫的频率下具有稳定功率增益。本文主要讨论了 G 波段放大器的电路分析、设计参数和测试结果。  相似文献   

19.
据报导,美国无线电公司采用一层掺铬的高阻砷化镓外延缓冲层作为器件有源区与单晶衬底之间的本体生长衬底之间的隔离,制出了一种革新的中功率砷化镓场效应晶体管(肖特基场效应晶体管)。据称,一个单元的器件在9千兆赫下以1分贝增益压缩,得到了高达300毫瓦的输出功率,5.2分贝的线性增益以及30%的漏极效率。三个单元的器件,在4千兆赫下以1分贝的增益压缩,实现了665毫瓦的输出功率,8分贝的线性  相似文献   

20.
具有从1千兆赫、20瓦到3千兆赫、5瓦水平的微波功率晶体管已在市场出售。已经作出了具有宽带匹配网络的晶体管管壳,使功率放大器的带宽达到了数百兆赫。解决了一些可靠性问题,例如,热斑的形成,功率的不均匀和金属徒动等等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号