首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(10):11851-11857
Low-cost dynamic materials for Faradaic redox reactions are needed for high-energy storage supercapacitors. A simple and cost-effective hydrothermal process was employed to synthesize amaryllis-like NiCo2S4 nanoflowers. The sample was characterized by X-ray powder diffraction, Brunauer–Emmett–Teller method, scanning electron microscopy, and transmission electron microscopy. NiCo2S4 nanoflowers were coated onto carbon fiber fabric and used as a binder-free electrode to fabricate a solid-state supercapacitor compact device. The solid-state supercapacitor exhibited excellent electrochemical performance, including high specific capacitance of 360 F g−1 at scan rate of 5 mV s−1 and high energy density of 25 W h kg−1 at power density of 168 W kg−1. In addition, the supercapacitor possessed high flexibility and good stability by retaining 90% capacitance after 5000 cycles. The high conductivity and Faradic-redox activity of NiCo2S4 nanoflowers resulted in high specific energy and power. Thus, NiCo2S4 nanoflowers are promising pseudocapacitive materials for low-cost and lightweight solid-state supercapacitors.  相似文献   

2.
《Ceramics International》2016,42(9):10719-10725
Hierarchical Co3O4@CoWO4/rGO core/shell nanoneedles arrays are successfully grown on 3D nickel foam using a simple, effective method. By virtue of its unique structure, Co3O4@CoWO4/rGO demonstrates an enhanced specific capacitance of 386 F g−1 at 0.5 A g−1 current density. It can be used as an integrated, additive-free electrode for supercapacitors that boasts excellent performance. As illustration, we assemble an asymmetric supercapacitor (ASC) using the as-prepared Co3O4@CoWO4/rGO as the positive electrode and activated carbon as the negative electrode. The optimized ASC displays a maximum energy density of 19.99 Wh kg−1 at a power density of 321 W kg−1. Furthermore, the ASC also presents a remarkably long cycle life along with 88.8% specific capacitance retention after 5000 cycles.  相似文献   

3.
《Ceramics International》2017,43(8):6054-6062
In this work, we reported the synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres by a controllable two-step reaction. Flower-like Co3O4 microspheres cores were firstly built from the self-assembly of Co3O4 nanosheets, on which MnO2 nanosheets shells were subsequently grown through the hydrothermal decomposition of KMnO4. The MnO2 nanosheets shells were found to increase the electrochemical active sites and allow faster redox reaction kinetics. Based on these advantages, when used as an electrode for supercapacitors, the prepared flower-like Co3O4@MnO2 core-shell composite electrode demonstrated a significantly enhanced specific capacitance (671 F g−1 at 1 A g−1) as well as improved rate capability (84% retention at 10 A g−1) compared with the pristine flower-like Co3O4 electrode. Moreover, the optimized asymmetric supercapacitor device based on the flower-like Co3O4@MnO2//active carbon exhibited a high energy density of 34.1 W h kg−1 at a power density of 750 W kg−1, meaning its great potential application for energy storage devices.  相似文献   

4.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

5.
Ultrathin scale-like nickel cobaltite (NiCo2O4) nanosheets supported on nitrogen-doped reduced graphene oxide (N-rGO) are successfully synthesized through a facile co-precipitation of Ni2+ and Co2+ in the presence of sodium citrate and hexamethylenetetramine and subsequent calcination treatment. The composition and morphology of NiCo2O4 nanosheets@nitrogen-doped reduced graphene oxide (denoted as NiCo2O4 NSs@N-rGO) were characterized by Scanning electron microscope, Transmission electron microscope, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller and thermogravimetric analysis. The thickness of NiCo2O4 nanosheets anchored on the reduced graphene oxide is around 4 nm. The capacitance of NiCo2O4 NSs@N-rGO is evaluated by cyclic voltammogram and galvanostatic charge/discharge with the result that the NiCo2O4 NSs@N-rGO could deliver a specific capacitance of 1540 F g−1 after 1000 cycles at 10 A g−1.  相似文献   

6.
《Ceramics International》2017,43(16):13710-13716
Development of novel electrode materials with high energy and power densities for lithium-ion batteries (LIBs) is the key to meet the demands of electric vehicles. Transition metal oxides that can react with large amounts of Li+ for electrochemical energy storage are considered promising anode materials for LIBs. In this work, NiCo2O4 nanosheets and nanocones on Ni foam have been synthesized via general hydrothermal growth and low-temperature annealing treatment. They exhibit high rate capacities and good cyclic performance as LIB anodes owing to their architecture design, which reduces ion and electron transport distance, expands the electrode–electrolyte contact, increases the structural stability, and buffers volume change during cycles. Notably, NiCo2O4 nanosheets deliver an initial capacity of 2239 mAh g−1 and a rate capacity of 964 mAh g−1 at current densities of 100 and 5000 mA g−1, respectively. The corresponding values of nanocones are 1912 and 714 mAh g−1. Hence, the as-synthesized NiCo2O4 nanosheets and nanocones, which are carbon-free and binder-free with higher energy densities and stronger connections between active materials and current collectors for better stability, are promising for use in advanced anodes for high-performance LIBs.  相似文献   

7.
《Ceramics International》2017,43(11):8321-8328
Here we describe the production of carbon cloth coated with MnO2 nanosheets or MnOOH nanorods through a normal temperature reaction or a hydrothermal approach, respectively. Of note, the electrochemical performance of MnO2-coated carbon cloth was better (429.2 F g−1) than that of MnOOH-coated carbon cloth. When the MnO2-coated carbon cloth is introduced as the positive electrode and the Fe2O3-coated carbon cloth as the negative electrode, a flexible asymmetric supercapacitor was obtained with an energy density of 22.8 Wh kg−1 and a power density of 159.4 W kg−1. Therefore, such a hierarchical MnO2-coated carbon cloth nanocomposite is a promising high-performance electrode for flexible supercapacitors.  相似文献   

8.
《Ceramics International》2015,41(6):7511-7518
Core/shell-structured nanocapsules consisting of a nickel cobaltite (NiCo2O4) nanoparticle core encapsulated in an onion-like carbon (C) shell are synthesized by arc-discharge and air-annealing methods. Void spaces between NiCo2O4 core and the carbon shell are observed in the NiCo2O4/C nanocapsules. Lithium-ion batteries fabricated using the nanocapsules as the anode material exhibit enhanced initial coulombic efficiency of 82.3% and specific capacity of 1197.2 mA h/g after 300 cycles at 0.2 A g−1 current density. Varying the rate of charge/discharge current from 0.2 to 4 A/g does not show negative effects on the recycling stability of the nanocapsules and a recoverable specific capacity as high as 1270.4 mA h/g is obtained. The introduction of the onion-like C shell and the presence of the void spaces are found to increase the contact areas between the electrolyte and the nanocapsules for improved electrolyte diffusion, to enhance the electronic conductivity and ionic mobility of the NiCo2O4 nanoparticle cores, and to accommodate the change in volume during the lithium-ion insertion/extraction process.  相似文献   

9.
《Ceramics International》2021,47(18):25942-25950
NiCo2S4 is one of the most promising bimetallic sulfides for use in energy-storage systems, but more studies are needed to endow NiCo2S4 with a high electrochemical reaction capability and reversibility. In this work, we present rationally materials design of an optimal NiCo2S4 nanoparticle in a reduced graphene oxide (RGO) matrix as a NiCo2S4/RGO nanocomposite. Furthermore, we report the improvements in the materials technology, demonstrating the NiCo2S4/RGO nanocomposite electrode with an excellent specific capacitance of 963–700 F g−1 at 1–15 A g−1, high capacitance retention of 70%, and long cycle life of 3000 cycles. The practical application is showcased in an asymmetric supercapacitor with a high active-material loading. The NiCo2S4/RGO nanocomposite shows a high energy density of 31 Wh kg−1 at a power density of 987 W kg−1 and maintains an excellent density of 23 Wh kg−1 at a high power density of 7418 W kg−1. The outstanding electrochemical utilization and stability of the NiCo2S4/RGO nanocomposite confirm that our systematic optimization in the materials science and technology in terms of the active-material synthesis, the electrode development, and the device design/fabrication would benefit the future development of high-performance supercapacitors.  相似文献   

10.
《Ceramics International》2017,43(2):2057-2062
A novel Ni@NiCo2O4 core/shells structure consisting of the Ni microspheres skeletons and nanosheet-like NiCo2O4 skins was designed and investigated as the electrochemical electrode for supercapacitor. Due to the unique architecture with Ni microspheres as the highly conductive cores improving the electrical conductivity of electrode and external nanosheet-like NiCo2O4 shells as the efficient electrochemical active materials facilitating the contact between the electrode and electrolyte, the as-prepared Ni@NiCo2O4 exhibited excellent electrochemical performance with high specific capacity of 597 F g−1 (1 A g−1) as well as remarkable capacitance retention of 96% (3000 cycles). These impressive results pave the way to design high-performance electrode materials for energy storage.  相似文献   

11.
《Ceramics International》2021,47(22):31650-31665
In this research work, we report a novel method for developing ternary NiCo2O4 compounds using deep eutectic solvents (DESs) and a strategy for improving their pseudocapacitive performance. NiCo2O4 composites with N-doped carbon nanotubes (NCNTs) were fabricated on Ni foam using a hydrothermal method. The electrochemical performance of the NiCo2O4 was altered with the change in the reaction temperature. The composite of NiCo2O4 and NCNTs demonstrated a maximum value of specific capacity of 303 mAh g−1 at a scan rate of 5 mV s−1. The specific capacity for the composite compound was 1.3-fold greater than that of the pristine NiCo2O4 sample. For practical applications, we constructed a flexible solid-state hybrid supercapacitor comprised of NiCo2O4/NCNTs//activated carbon (AC) cells with an excellent energy density of 12.31 Wh kg−1, outstanding power density of 8.96 kW kg−1, and tremendous electrode stability. The three-dimensional mesoporous nanoflowers and nanotubes-like nanostructures of NiCo2O4 are well-suited for use in hybrid devices as well as convenient for flexible electronic devices.  相似文献   

12.
《Ceramics International》2017,43(7):5642-5646
Perovskite-structured Li3/8Sr7/16Zr1/4Nb3/4O3 solid-state Lithium-conductors were prepared by conventional solid-state reaction method. Influence of sintering aids (Al2O3, B2O3) and excess Lithium on structure and electrical properties of Li3/8Sr7/16Zr1/4Nb3/4O3 (LSNZ) has been investigated. Their crystal structure and microstructure were characterized by X-ray diffraction analysis and scanning electron microscope, respectively. The conductivity and electronic conductivity were evaluated by AC-impedance spectra and potentiostatic polarization experiment. All sintered compounds are cubic perovskite structure. Optimal amount of excess Li2CO3 was chosen as 20 wt% because of the total conductivity of LSNZ-20% was as high as 1.6×10−5 S cm−1 at 30 °C and 1.1×10−4 S cm−1 at 100 °C, respectively. Electronic conductivity of LSNZ-20% is 2.93×10−8 S cm−1, nearly 3 orders of magnitude lower than ionic conductivity. The density of solid electrolytes appears to be increased by the addition of sintering aids. The addition of B2O3 leads to a considerable increase of the total conductivity and the enhancement of conductivity is attributed to the decrease of grain-boundary resistance. Among these compounds, LSNZ-1 wt%B2O3 has lower activation energy of 0.34 eV and the highest conductivity of 1.98×10−5 S cm−1 at 30 °C.  相似文献   

13.
New spinel-types of S2O82 /ZnFexAl2  xO4 solid acid catalysts were prepared by sol–gel method. Their catalytic performances for the synthesis of n-butyl acetate were investigated. The catalysts were characterized by means of XRD, IR, XPS, FT-IR of adsorbed pyridine and NH3-TPD. The experimental results showed that S2O82 /ZnFexAl2  xO4 solid acid catalysts maintained the spinel structure as well as the support of ZnFexAl2  xO4. Fe3 + ions were well incorporated and highly dispersed into the spinel lattice. S2O82 /ZnFe0.15Al1.85O4 exhibited the maximum conversion of acetic acid with 98.2%. Moreover, S2O82 /ZnFe0.15Al1.85O4 showed better reusability, which remained above 72.7% conversion of acetic acid even after being used five times.  相似文献   

14.
《Ceramics International》2017,43(18):16611-16621
Effect of core-shell reversal on the nanocomposites of graphene oxide (GO) and ferric oxide (Fe2O3) was studied. Fe2O3@GO core-shell nanosheets were synthesized by sonication method, while the GO@Fe2O3 core-shell nanospheres by employing N,N′-dicyclohexylcarbodimide as the binding agent for the wrapping of GO sheets on pre-formed Fe2O3 nanoparticles (NPs). The phase composition, crystallinity and morphology of the nanocomposites were characterized by FT-IR, TEM, SEM-EDS, VSM, BET surface area study and XRD techniques. The saturation magnetization (Ms) was 1.25 and 0.51 emu g−1 for GO@Fe2O3 and Fe2O3@GO respectively owing to the dependence of magnetic properties on the reversal of core-shell. BET analysis revealed the surface area of 100.32 m2 g−1 and 45.69 m2 g−1 for GO@Fe2O3 and Fe2O3@GO nanocomposites respectively. The fabricated nanocomposites were analyzed as adsorbents for the uptake of Pb (II) ions. The impact of various factors affecting adsorption process such as pH, adsorbent dose, contact time, temperature and metal ion concentration was also investigated. GO@Fe2O3 core-shell nanospheres showed a higher adsorption capacity for Pb (II) ions as compared to Fe2O3@GO core-shell nanosheet with the maximum adsorption capacities (qm) of 303.0 and 125.0 mg g−1 respectively. The equilibrium data was estimated by Freundlich, Langmuir, D-R and Temkin isotherm models. Thermodynamic analysis confirmed the spontaneous and exothermic nature of the adsorption process. The adsorption kinetics was significantly fitted to pseudo-second order model. The results confirmed that core-shell reversal can significantly alter the adsorptive properties of Fe2O3-GO nanocomposite  相似文献   

15.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

16.
In order to increase the energy density of supercapacitor, a new kind electrode material with excellent structure and outstanding electrochemical performance is highly desired. In this article, a new type of three-dimensional (3D) nitrogen-doped single-wall carbon nanotubes (SWNTs)/graphene elastic sponge (TRGN?CNTs?S) with low density of 0.8 mg cm?3 has been successfully prepared by pyrolyzing SWNTs and GO coated commercial polyurethane (PU) sponge. In addition, high performance electrode of the honeycomb-like NiCo2O4@Ni(OH)2/TRGN-CNTs-S with core-shell structure has been successfully fabricated through hydrothermal method and then by annealing treatment and electrochemical deposition method, respectively. Benefited from 3D structural feature, the compressed NiCo2O4@Ni(OH)2/TRGN-CNTs-S electrode exhibits high gravimetric and volumetric capacitance of 1810 F g?1, 847.7 F cm?3 at 1 A g?1. The high rate performance and long-term stability was also obtained. Furthermore, an asymmetric supercapacitor using NiCo2O4@Ni(OH)2/TRGN-CNTs-S cathode and NGN/CNTs anode delivered high gravimetric and volumetric energy density of 54 W h kg?1 at 799.9 W kg?1 and 37 W h L?1 at 561.5 W L?1. In summary, an excellent electrochemical electrode with new elastic 3D SWNTs/graphene supports and binder free pseudocapacitive materials was introduced.  相似文献   

17.
《Ceramics International》2015,41(8):9655-9661
The hollow core–shell ZnMn2O4 microspheres are successfully prepared by a solvothermal carbon templating method and then a annealing process. The crystal phase and particle morphology of resultant ZnMn2O4 microspheres are characterized by XRD and TEM. The electrochemical properties of the ZnMn2O4 microspheres as an anode material are investigated for lithium ion batteries. The results show that the ZnMn2O4 microspheres exhibit a reversible capacity of 855.8 mA h g−1 at a current density of 200 mA g−1 after 50 cycles. Even at 1000 mA g−1, the reversible capacity of the ZnMn2O4 microspheres is still kept at 724.4 mA h g−1 after 60 cycles. The enhanced electrochemical performance suggests the promising potential of the hollow core–shell ZnMn2O4 microspheres in lithium-ion batteries.  相似文献   

18.
《Ceramics International》2017,43(15):11879-11884
Li6.5La3Zr1.5Nb0.5O12 (LLZN) garnet-type structure was synthesized at low temperature with B2O3 addition by solid state reaction method. The effects of B2O3 content on the formation, microstructure, ionic conductivity and activation energy of the LLZN solid electrolytes have been investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM) and alternate current (AC) impedance spectroscopy. The cubic LLZN phase was obtained after calcining at 850 °C for 6 h and no phase evolution was observed after sintering at 1100 °C for 6 h. The relative density and lithium ion conductivity increased first and then decreased with increasing B2O3 content, reaching the maximum value of 92.4% and 1.86×10−4 S cm−1 respectively in the sample with 1.4 wt% B2O3. By contrast, the activation energy reached a minimum value of ~31.5 kJ mol−1.  相似文献   

19.
Two-dimensional mesoporous carbon sheet-like framework (MCSF) material has been prepared using mesoporous SiO2 nanosheet as template and coal tar pitch as carbon precursor. MCSF sheets consisting of numerous mesopores have a specific surface area of 582.7 m2 g−1. As a result, the MCSF electrode possesses a maximum specific capacitance of 264 F g−1 at 5 mV s−1, excellent rate capability (74% retention ratio at 1000 mV s−1), and impressive cycling stability with 91% initial capacitance retained after 5000 cycles at 200 mV s−1 in 6 mol L−1 KOH. MCSF symmetric supercapacitor exhibits a maximum energy density of 9.6 Wh kg−1 at 5 mV s−1 and a maximum power density of 119.4 kW kg−1 based on the total mass of the two electrodes in 1 mol L−1 Na2SO4 electrolyte.  相似文献   

20.
Mn2+-doped Sn1−xMnxP2O7 (x = 0–0.2) are synthesized by a new co-precipitation method using tin(II)oxalate as tin(IV) precursor, which gives pure tin pyrophosphate at 300 °C, as all the reaction by-products are vaporizable at <150 °C. The dopant Mn2+ acts as a sintering aid and leads to dense Sn1−xMnxP2O7 samples on sintering at 1100 °C. Though conductivity of Sn1−xMnxP2O7 samples in the ambient atmosphere is 10−9–10−6 S cm−1 in 300–550 °C range, it increases significantly in humidified (water vapor pressure, pH2O = 0.12 atm) atmosphere and reaches >10−3 S cm−1 in 100–200 °C range. The maximum conductivity is shown by Sn0.88Mn0.12P2O7 with 9.79 × 10−6 S cm−1 at 550 °C in ambient air and 2.29 × 10−3 S cm−1 at 190 °C in humidified air. It is observed that the humidification of Sn1−xMnxP2O7 samples is a slow process and its rate increases at higher temperature. The stability of Sn1−xMnxP2O7 samples is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号