首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds, few sires have progeny records, and genotyping cows can improve the accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs of genotyped bulls, with cows selected from among 1,440 genotyped cows using different genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation among the cows. Genomic EBV were predicted using 4 different methods: (1) pedigree BLUP, (2) genomic BLUP using only bulls, (3) univariate genomic BLUP using bulls and cows, and (4) bivariate genomic BLUP. Genotyping cows with phenotypes and using their data for the prediction of single nucleotide polymorphism effects increased the correlation between genomic EBV and phenotypes compared with using only bulls by 0.163 ± 0.022 for milk yield, 0.111 ± 0.021 for fat yield, and 0.113 ± 0.018 for protein yield; a decrease of 0.014 ± 0.010 for calving interval from a low base was the only exception. Genetic correlation between phenotypes from bulls and cows were approximately 0.6 for all yield traits and significantly different from 1. Only a very small change occurred in correlation between genomic EBV and phenotypes when using the bivariate model. It was always better to genotype all the cows, but when only half of the cows were genotyped, a divergent selection strategy was better compared with the random or directional selection approach. Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds.  相似文献   

2.
This study investigated the possibility of increasing the reliability of direct genomic values (DGV) by combining reference populations. The data were from 3,735 bulls from Danish, Swedish, and Finnish Red dairy cattle populations. Single nucleotide polymorphism markers were fitted as random variables in a Bayesian model, using published estimated breeding values as response variables. In total, 17 index traits were analyzed. Reliabilities were estimated using a 5-fold cross validation, and calculated as the within-year squared correlation between estimated breeding values and DGV. Marker effects were estimated using reference populations from individual countries, as well as using a combined reference population from all 3 countries. Single-country reference populations gave mean reliabilities across 17 traits of 0.19 to 0.23, whereas the combined reference gave mean reliabilities of 0.26 for all populations. Using marker effects from 1 population to predict the other 2 gave a loss in mean reliability of 0.14 to 0.21 when predicting Swedish or Finnish animals with Danish marker effects, or vice versa. Using Swedish or Finnish marker effects to predict each other only showed a loss in mean reliability of 0.03 to 0.05. A combined Swedish-Finnish reference population led to an average reliability as high as that from the 3-country reference population, but somewhat different for individual traits. The results from this study show that it is possible to increase the reliability of DGV by combining reference populations from related populations.  相似文献   

3.
The objective of this study was to evaluate a genomic breeding scheme in a small dairy cattle population that was intermediate in terms of using both young bulls (YB) and progeny-tested bulls (PB). This scheme was compared with a conventional progeny testing program without use of genomic information and, as the extreme case, a juvenile scheme with genomic information, where all bulls were used before progeny information was available. The population structure, cost, and breeding plan parameters were chosen to reflect the Danish Jersey cattle population, being representative for a small dairy cattle population. The population consisted of 68,000 registered cows. Annually, 1,500 bull dams were screened to produce the 500 genotyped bull calves from which 60 YB were selected to be progeny tested. Two unfavorably correlated traits were included in the breeding goal, a production trait (h2 = 0.30) and a functional trait (h2 = 0.04). An increase in reliability of 5 percentage points for each trait was used in the default genomic scenario. A deterministic approach was used to model the different breeding programs, where the primary evaluation criterion was annual monetary genetic gain (AMGG). Discounted profit was used as an indicator of the economic outcome. We investigated the effect of varying the following parameters: (1) increase in reliability due to genomic information, (2) number of genotyped bull calves, (3) proportion of bull dam sires that are young bulls, and (4) proportion of cow sires that are young bulls. The genomic breeding scheme was both genetically and economically superior to the conventional breeding scheme, even in a small dairy cattle population where genomic information causes a relatively low increase in reliability of breeding values. Assuming low reliabilities of genomic predictions, the optimal breeding scheme according to AMGG was characterized by mixed use of YB and PB as bull sires. Exclusive use of YB for production cows increased AMGG up to 3 percentage points. The results from this study supported our hypothesis that strong interaction effects exist. The strongest interaction effects were obtained between increased reliabilities of genomic estimated breeding values and more intensive use of YB. The juvenile scheme was genetically inferior when the increase in reliability was low (5 percentage points), but became genetically superior at higher reliabilities of genomic estimated breeding values. The juvenile scheme was always superior according to discounted profit because of the shorter generation interval and minimizing costs for housing and feeding waiting bulls.  相似文献   

4.
In this study, we compared genetic gain, genetic variation, and the efficiency of converting variation into gain under different genomic selection scenarios with truncation or optimum contribution selection in a small dairy population by simulation. Breeding programs have to maximize genetic gain but also ensure sustainability by maintaining genetic variation. Numerous studies have shown that genomic selection increases genetic gain. Although genomic selection is a well-established method, small populations still struggle with choosing the most sustainable strategy to adopt this type of selection. We developed a simulator of a dairy population and simulated a model after the Slovenian Brown Swiss population with ~10,500 cows. We compared different truncation selection scenarios by varying (1) the method of sire selection and their use on cows or bull-dams, and (2) selection intensity and the number of years a sire is in use. Furthermore, we compared different optimum contribution selection scenarios with optimization of sire selection and their usage. We compared scenarios in terms of genetic gain, selection accuracy, generation interval, genetic and genic variance, rate of coancestry, effective population size, and conversion efficiency. The results showed that early use of genomically tested sires increased genetic gain compared with progeny testing, as expected from changes in selection accuracy and generation interval. A faster turnover of sires from year to year and higher intensity increased the genetic gain even further but increased the loss of genetic variation per year. Although maximizing intensity gave the lowest conversion efficiency, faster turnover of sires gave an intermediate conversion efficiency. The largest conversion efficiency was achieved with the simultaneous use of genomically and progeny-tested sires that were used over several years. Compared with truncation selection, optimizing sire selection and their usage increased the conversion efficiency by achieving either comparable genetic gain for a smaller loss of genetic variation or higher genetic gain for a comparable loss of genetic variation. Our results will help breeding organizations implement sustainable genomic selection.  相似文献   

5.
Genomic selection has the potential to increase the accuracy of selection and, therefore, genetic gain, as well as reducing the rate of inbreeding, yet few studies have evaluated the potential benefit of the contribution of females in genomic selection programs. The objective of this study was to determine the effect on genetic gain, accuracy of selection, generation interval, and inbreeding, of including female genotypes in a genomic selection breeding program. A population of approximately 3,500 females and 500 males born annually was simulated and split into an elite and commercial tier representation of the Irish national herd. Several alternative breeding schemes were evaluated to quantify the potential benefit of female genomic information within dairy breeding schemes. Results showed that the inclusion of female phenotypic and genomic information can lead to a 3-fold increase in the rate of genetic gain compared with a traditional BLUP breeding program and decrease the generation interval of the males by 3.8 yr, while maintaining a reasonable rate of inbreeding. The accuracy of the selected males was increased by 73% in the final 3 yr of the genomic schemes compared with the traditional BLUP scheme. The results of this study have several implications for national breeding schemes. Although an investment in genotyping a large population of animals is required, these costs can be offset by the greater genetic gain achievable through the increased accuracy of selection and decreased generation intervals associated with genomic selection.  相似文献   

6.
The objective of this study was to predict genomic breeding values for milk yield of crossbred dairy cattle under different scenarios using single-step genomic BLUP (ssGBLUP). The data set included 13,880,217 milk yield measurements on 6,830,415 cows. Genotypes of 89,558 Holstein, 40,769 Jersey, and 22,373 Holstein-Jersey crossbred animals were used, of which all Holstein, 9,313 Jersey, and 1,667 crossbred animals had phenotypic records. Genotypes were imputed to 45K SNP markers. The SNP effects were estimated from single-breed evaluations for Jersey (JE), Holstein (HO) and crossbreds (CROSS), and multibreed evaluations including all Jersey and Holstein (JE_HO) or approximately equal proportions of Jersey, Holstein, and crossbred animals (MIX). Indirect predictions (IP) of the validation animals (358 crossbred animals with phenotypes excluded from evaluations) were calculated using the resulting SNP effects. Additionally, breed proportions (BP) of crossbred animals were applied as a weight when IP were estimated based on each pure breed. The predictive ability of IP was calculated as the Pearson correlation between IP and phenotypes of the validation animals adjusted for fixed effects in the model. Regression of adjusted phenotypes on IP was used to assess the inflation of IP. The predictive ability of IP for CROSS, JE, HO, JE_HO, and MIX scenario was 0.50, 0.50, 0.47, 0.50, and 0.46, respectively. Using BP was the least successful, with a predictive ability of 0.32. The inflation of the IP for crossbred animals using CROSS, JE, HO, JE_HO, MIX, and BP scenarios were 1.17, 0.65, 0.55, 0.78, 1.00, and 0.85, respectively. The IP of crossbred animals can be predicted using single-step GBLUP under a scenario that includes purebred genotypes.  相似文献   

7.
A genomic preselection step of young sires is now often included in dairy cattle breeding schemes. Young sires are selected based on their genomic breeding values. They have better Mendelian sampling contribution so that the assumption of random Mendelian sampling term in genetic evaluations is clearly violated. When these sires and their progeny are evaluated using BLUP, it is feared that estimated breeding values are biased. The effect of genomic selection on genetic evaluations was studied through simulations keeping the structure of the Holstein population in France. The quality of genetic evaluations was assessed by computing bias and accuracy from the difference and correlation between true and estimated breeding values, respectively, and also the mean square error of prediction. Different levels of heritability, selection intensity, and accuracy of genomic evaluation were tested. After only one generation and whatever the scenario, breeding values of preselected young sires and their daughters were significantly underestimated and their accuracy was decreased. Genomic preselection needs to be accounted for in genetic evaluation models.  相似文献   

8.
The objective of the present study was to conduct a stochastic simulation study on the possible benefits of an application of genomic selection in dairy cattle breeding programs according to a variety of selection schemes. In addition, the heritability of the trait in question, the accuracy of genomic breeding values, and the number of animals to be genotyped were varied. Specifically, the question of genotyping males, females, or both, was addressed. Selection schemes were compared with a young bull breeding program. The main criterion for comparison was the average of true breeding values of selected young males to be used as replacements for artificial insemination bulls. Stochastic simulations were run with 50 repetitions each to generate individuals with phenotypes, breeding values estimated by BLUP, and true breeding values. Genomic breeding values were generated from true breeding values with defined accuracy. Examined scenarios included a group of selection schemes that featured genotyping of parents of future bulls only. Such schemes can be viewed as improvements of young bull programs, and they were found to be competitive with or superior to a classical young bull program. However, a genomic breeding program usually involves at least genotyping young male candidates. A second group of selection schemes reflected this requirement. Scenarios in this group were found to be superior over the young bull program by 1.0 to 1.2 standard deviations of the average true breeding value of young male candidates. Within this group of scenarios, one scheme referred to an ideal situation under which genotypes for male calves were available without limitation. Using the average of true breeding values as the criterion for comparison, this idealistic scenario was competitive with other scenarios only if the reliability of genomic breeding values was larger than 0.50. Conventionally, not all males available will have genotypes, and the 2 most promising scenarios included a preselection step for dams of future bulls. This preselection step can be based on conventional BLUP estimated breeding values for bull dams, because differences with a scheme under which both parents and the resulting male offspring are genotyped were marginal. Genotyping of young male candidates should be the focus of activities of today's breeding organizations.  相似文献   

9.
A comparison of dairy cattle breeding designs that use genomic selection   总被引:1,自引:0,他引:1  
Different dairy cattle breeding schemes were compared using stochastic simulations, in which the accuracy of the genomic breeding values was dependent on the structure of the breeding scheme, through the availability of new genotyped animals with phenotypic information. Most studies that predict the gain by implementing genomic selection apply a deterministic approach that requires assumptions about the accuracy of the genomic breeding values. The achieved genetic gain, when genomic selection was the only selection method to directly identify elite sires for widespread use and progeny testing was omitted, was compared with using genomic selection for preselection of young bulls for progeny testing and to a conventional progeny test scheme. The rate of inbreeding could be reduced by selecting more sires every year. Selecting 20 sires directly on their genomic breeding values gave a higher genetic gain than any progeny testing scheme, with the same rate of inbreeding as the schemes that used genomic selection for preselection of bulls before progeny testing. The genomic selection breeding schemes could reduce the rate of inbreeding and still increase genetic gain, compared with the conventional breeding scheme. Since progeny testing is expensive, the breeding scheme omitting the progeny test will be the cheapest one. Keeping the progeny test and use of genomic selection for preselection still has some advantages. It gives higher accuracy of breeding values and does not require a complete restructuring of the breeding program. Comparing at the same rate of inbreeding, using genomic selection for elite sire selection only gives a 13% increase in genetic gain, compared with using genomic selection for preselection. One way to reduce the costs of the scheme where genomic selection was used for preselection is to reduce the number of progeny tested bulls. This was here achieved without getting lower genetic gain or a higher rate of inbreeding.  相似文献   

10.
Nearly 57,000 single-nucleotide polymorphisms (SNP) genotyped with the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) were investigated to determine usefulness of the associated SNP for genomic prediction. Genotypes were obtained for 12,591 bulls and cows, and SNP were selected based on 5,503 bulls with genotypes from a larger set of SNP. The following SNP were deleted: 6,572 that were monomorphic, 3,213 with scoring problems (primarily because of poor definition of clusters and excess number of clusters), and 3,649 with a minor allele frequency of <2%. Number of SNP for each minor allele frequency class (≥2%) was fairly uniform (777 to 1,004). For 5 contiguous SNP assigned to chromosome 7, no bulls were heterozygous, which indicated that those SNP are actually on the nonpseudoautosomal portion of the X chromosome. Another 178 SNP that were not assigned to a chromosome but that had many fewer heterozygotes than expected were also assigned to the X chromosome. Existence of Hardy-Weinberg equilibrium was investigated by comparing observed with expected heterozygosity. For 11 SNP, the observed percentage of heterozygous individuals differed from the expected by >15%; therefore, those SNP were deleted. For 2,628 SNP, the genotype at another SNP was highly correlated (i.e., genotypes were identical for >99.5% of bulls), and those were deleted. After edits, 40,874 SNP remained. A parent-progeny conflict was declared when the genotypes were alternate homozygotes. Mean number of conflicts was 2.3 when pedigree was correct and 2,411 when it was incorrect. The sire was genotyped for >93% of animals. Maternal grandsire genotype was similarly checked; however, because alternate homozygotes could be valid, a conflict threshold of 16% was used to indicate a need for further investigation. Genotyping consistency was investigated for 21 bulls genotyped twice with differences primarily from SNP that were not scored in one of the genotypes. Concordance for readable SNP was extremely high (99.96-100%). Thousands of SNP that were polymorphic in Holsteins were monomorphic in Jerseys or Brown Swiss, which indicated that breed-specific SNP sets are required or that all breeds need to be considered in the SNP selection process. Genotypes from the Illumina BovineSNP50 BeadChip are of high accuracy and provide the basis for genomic evaluations in the United States and Canada.  相似文献   

11.
Genomic selection has been implemented over the years in several livestock species, due to the achievable higher genetic progress. The use of genomic information in evaluations provides better prediction accuracy than do pedigree-based evaluations, and the makeup of the genotyped population is a decisive point. The aim of this work is to compare the effect of different genotyping strategies (number and type of animals) on the prediction accuracy for dairy sheep Latxa breeds. A simulation study was designed based on the real data structure of each population, and the phenotypic and genotypic data obtained were used in genetic (BLUP) and genomic (single-step genomic BLUP) evaluations of different genotyping strategies. The genotyping of males was beneficial when they were genetically connected individuals and if they had daughters with phenotypic records. Genotyping females with their own lactation records increased prediction accuracy, and the connection level has less relevance. The differences in genotyping females were independent of their estimated breeding value. The combined genotyping of males and females provided intermediate accuracy results regardless of the female selection strategy. Therefore, assuming that genotyping rams is interesting, the incorporation of genotyped females would be beneficial and worthwhile. The benefits of genotyping individuals from various generations were highlighted, although it was also possible to gain prediction accuracy when historic individuals were not considered. Greater genotyped population sizes resulted in more accuracy, even if the increase seems to reach a plateau.  相似文献   

12.
Genomic selection (GS) permits accurate breeding values to be obtained for young animals, shortening the generation interval and accelerating the genetic gain, thereby leading to reduced costs for proven bulls. Genotyping a large number of animals using high-density single nucleotide polymorphism marker arrays is nevertheless expensive, and therefore, a method to reduce the costs of GS is desired. The aim of this study was to investigate an influence of enlarging the reference population, with either genotyped animals or individuals with predicted genotypes, on the accuracy of genomic estimated breeding values. A dairy cattle population was simulated in which proven bulls with 100 daughters were used as a reference population for GS. Phenotypic records were simulated for bulls with heritability equal to the reliability of daughter yield deviations based on 100 daughters. The simulated traits represented heritabilities at the level of individual daughter performance of 0.3, 0.05, and 0.01. Three scenarios were considered in which (1) the reference population consisted of 1,000 genotyped animals, (2) 1,000 ungenotyped animals were added to the reference population, and (3) the 1,000 animals added in scenario 2 were genotyped in addition to the 1,000 animals from scenario 1. Genotypes for ungenotyped animals were predicted with an average accuracy of 0.58. Additionally, an adjustment of the diagonal elements of the G matrix was proposed for animals with predicted genotypes. The accuracy of genomic estimated breeding values for juvenile animals was the highest for the scenario with 2,000 genotyped animals, being 0.90, 0.79, and 0.60 for the heritabilities of 0.3, 0.05, and 0.01, respectively. Accuracies did not differ significantly between the scenario with 1,000 genotyped animals only and the scenario in which 1,000 ungenotyped animals were added and the adjustment of the G matrix was applied. The absence of significant increase in the accuracy of genomic estimated breeding values was attributed to the low accuracy of predicted genotypes. Although the differences were not significant, the difference between scenario 1 and 2 increased with decreasing heritability. Without the adjustment of the diagonal elements of the G matrix, accuracy decreased. Results suggest that inclusion of ungenotyped animals is only expected to enhance the accuracy of GS when the unknown genotypes can be predicted with high accuracy.  相似文献   

13.
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations.  相似文献   

14.
《Journal of dairy science》2022,105(3):2426-2438
This study investigated the reliability of genomic prediction (GP) using breed origin of alleles (BOA) approach in the Nordic Red (RDC) population, which has an admixed population structure. The RDC population consists of animals with varying degrees of genetic materials from the Danish Red (RDM), Swedish Red (SRB), Finnish Ayrshire (FAY), and Holstein (HOL) because bulls have been used across the breeds. The BOA approach was tested using 39,550 RDC animals in the reference population and 11,786 in the validation population. Deregressed proofs (DRP) of milk, fat and protein were used as response variable for GP. Direct genomic breeding values (DGV) for animals in the validation population were calculated with (BOA model) or without (joint model) considering breed origin of alleles. The joint model assumed homogeneous marker effects and a single set of marker effects were estimated, whereas BOA model assumed heterogeneous marker effects, and different sets of marker effects were estimated across the breeds. For the BOA approach, we tested scenarios assuming both correlated (BOA_cor) and uncorrelated (BOA_uncor) marker effects between the breeds. Additionally, we investigated GP using a standard Illumina 50K chip and including SNP selected from imputed whole-genome sequencing (50K+WGS). We also studied the effect of estimating (co)variances for genome regions of different sizes to exploit the information of the genome regions contributing to the (co)variance between the breeds. Region sizes were set as 1 SNP, a group of 30 or 100 adjacent SNP, or the whole genome. Reliability of DGV was measured as squared correlations between DGV and DRP divided by the reliability of DRP. Across the 3 traits, in general, RS30 and RS100 SNP yielded the highest reliabilities. Including WGS SNP improved reliabilities in almost all scenarios (0.297 on average for 50K and 0.307 on average for 50K+WGS). The BOA_uncor (0.233 on average) was inferior to the joint model (0.339 on average), but the reliabilities obtained using BOA_cor (0.334 on average) in most cases were not significantly different from those obtained using the joint model. The results indicate that both including additional whole-genome sequencing SNP and dividing the genome into fixed regions improve GP in the RDC. The BOA models have the potential to increase the reliability of GP, but the benefit is limited in populations with a high exchange of genetic material for a long time, as is the case for RDC.  相似文献   

15.
Genomic evaluation has been successfully implemented in the United States, Canada, Great Britain, Ireland, New Zealand, Australia, France, the Netherlands, Germany, and the Scandinavian countries. Adoption of this technology in the major dairy producing countries has led to significant changes in the worldwide dairy industry. Gradual elimination of the progeny test system has led to a reduction in the number of sires with daughter records and fewer genetic ties between years. As genotyping costs decrease, the number of cows genotyped will continue to increase, and these records will become the basic data used to compute genomic evaluations, most likely via application of “single-step” methodologies. Although genomic selection has been successful in increasing rates of genetic gain, we still know very little about the genetic architecture of quantitative variation. Apparently, a very large number of genes affect nearly all economic traits, in accordance with the infinitesimal model for quantitative traits. Less emphasis in selection goals will be placed on milk production traits, and more on health, reproduction, and efficiency traits and on environmentally friendly production with reduced waste and gas emission. Genetic variance for economic traits is maintained by the increase in frequency of rare alleles, new mutations, and changes in selection goals and management. Thus, it is unlikely that a selection plateau will be reached in the near future.  相似文献   

16.
《Journal of dairy science》2022,105(7):5985-6000
Conformation traits are functional traits known to affect longevity, production efficiency, and profitability of dairy goats. However, genetic progress for these traits is expected to be slower than for milk production traits due to the limited number of herds participating in type classification programs, and often lower heritability estimates. Genomic selection substantially accelerates the rate of genetic progress in many species and industries, especially for lowly heritable, difficult, or expensive to measure traits. Therefore, the main objectives of this study were (1) to evaluate the potential benefits of the implementation of single-step genomic evaluations for conformation traits in Canadian Alpine and Saanen dairy goats, and (2) to investigate the effect of the use of single- and multiple-breed training populations. The phenotypes used in this study were linear conformation scores, on a 1-to-9 scale, for 8 traits (i.e., body capacity, dairy character, fore udder, feet and legs, general appearance, rear udder, medial suspensory ligament, and teats) of 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Averaged across all traits, the use of multiple-breed analyses increased validation accuracy for Saanen, and reduced bias of genomically enhanced breeding values (GEBV) for both Alpine and Saanen compared with single-breed analyses. Little benefit was observed from the use of GEBV relative to pedigree-based EBV in terms of validation accuracy and bias, possibly due to limitations in the validation design, but substantial gains of 0.14 to 0.21 (32–50%) were observed in the theoretical accuracy of validation animals when averaged across traits for single- and multiple-breed analyses. Across the whole genotyped population, average gains in theoretical accuracy for GEBV compared with EBV across all traits ranged from 0.15 to 0.17 (32–37%) for Alpine and 0.17 to 0.19 (40–41%) for Saanen, depending on the model used. The largest gains were observed for does without classification records (0.19–0.22 or 50–55%) and bucks without daughter classification records (0.20–0.27 or 57–82%), which have the least information contributing to their traditional EBV. The use of multiple-breed rather than single-breed models was most beneficial for the Saanen breed, which had fewer phenotypic records available for the analyses. These results suggest that the implementation of genomic selection could increase the accuracy of breeding values for conformation traits in Canadian dairy goats.  相似文献   

17.
The objective of the present study was to evaluate the predictive ability of direct genomic values for economically important dairy traits when genotypes at some single nucleotide polymorphism (SNP) loci were imputed rather than measured directly. Genotypic data consisted of 42,552 SNP genotypes for each of 1,762 Jersey sires. Phenotypic data consisted of predicted transmitting abilities (PTA) for milk yield, protein percentage, and daughter pregnancy rate from May 2006 for 1,446 sires in the training set and from April 2009 for 316 sires in the testing set. The SNP effects were estimated using the Bayesian least absolute selection and shrinkage operator (LASSO) method with data of sires in the training set, and direct genomic values (DGV) for sires in the testing set were computed by multiplying these estimates by corresponding genotype dosages for sires in the testing set. The mean correlation across traits between DGV (before progeny testing) and PTA (after progeny testing) for sires in the testing set was 70.6% when all 42,552 SNP genotypes were used. When genotypes for 93.1, 96.6, 98.3, or 99.1% of loci were masked and subsequently imputed in the testing set, mean correlations across traits between DGV and PTA were 68.5, 64.8, 54.8, or 43.5%, respectively. When genotypes were also masked and imputed for a random 50% of sires in the training set, mean correlations across traits between DGV and PTA were 65.7, 63.2, 53.9, or 49.5%, respectively. Results of this study indicate that if a suitable reference population with high-density genotypes is available, a low-density chip comprising 3,000 equally spaced SNP may provide approximately 95% of the predictive ability observed with the BovineSNP50 Beadchip (Illumina Inc., San Diego, CA) in Jersey cattle. However, if fewer than 1,500 SNP are genotyped, the accuracy of DGV may be limited by errors in the imputed genotypes of selection candidates.  相似文献   

18.
The success and sustainability of a breeding program incorporating genomic information is largely dependent on the accuracy of predictions. For low heritability traits, large training populations are required to achieve high accuracies of genomic estimated breeding values (GEBV). By including genotyped and nongenotyped animals simultaneously in the evaluation, the single-step genomic BLUP (ssGBLUP) approach has the potential to deliver more accurate and less biased genomic evaluations. The aim of this study was to compare the accuracy and bias of genomic predictions for various traits in Canadian Holstein cattle using ssGBLUP and multi-step genomic BLUP (msGBLUP) under different strategies, such as (1) adding genomic information of cows in the analysis, (2) testing different adjustments of the genomic relationship matrix, and (3) using a blending approach to obtain GEBV from msGBLUP. The following genomic predictions were evaluated regarding accuracy and bias: (1) GEBV estimated by ssGBLUP; (2) direct genomic value estimated by msGBLUP with polygenic effects of 5 and 20%; and (3) GEBV calculated by a blending approach of direct genomic value with estimated breeding values using polygenic effects of 5 and 20%. The effect of adding genomic information of cows in the evaluation was also assessed for each approach. When genomic information was included in the analyses, the average improvement in observed reliability of predictions was observed to be 7 and 13 percentage points for reproductive and workability traits, respectively, compared with traditional BLUP. Absolute deviation from 1 of the regression coefficient of the linear regression of de-regressed estimated breeding values on genomic predictions went from 0.19 when using traditional BLUP to 0.22 when using the msGBLUP method, and to 0.14 when using the ssGBLUP method. The use of polygenic weight of 20% in the msGBLUP slightly improved the reliability of predictions, while reducing the bias. A similar trend was observed when a blending approach was used. Adding genomic information of cows increased reliabilities, while decreasing bias of genomic predictions when using the ssGBLUP method. Differences between using a training population with cows and bulls or with only bulls for the msGBLUP method were small, likely due to the small number of cows included in the analysis. Predictions for lowly heritable traits benefit greatly from genomic information, especially when all phenotypes, pedigrees, and genotypes are used in a single-step approach.  相似文献   

19.
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds.  相似文献   

20.
《Journal of dairy science》2022,105(6):5141-5152
Official multibreed genomic evaluations for dairy cattle in the United States are based on multibreed BLUP evaluation followed by single-breed estimation of SNP effects. Single-step genomic BLUP (ssGBLUP) allows the straight computation of genomic (G)EBV in a multibreed context. This work aimed to develop ssGBLUP multibreed genomic predictions for US dairy cattle using the algorithm for proven and young (APY) to compute the inverse of the genomic relationship matrix. Only purebred Ayrshire (AY), Brown Swiss (BS), Guernsey (GU), Holstein (HO), and Jersey (JE) animals were considered. A 3-trait model with milk (MY), fat (FY), and protein (PY) yields was applied using about 45 million phenotypes recorded from January 2000 to June 2020. The whole data set included about 29.5 million animals, of which almost 4 million were genotyped. All the effects in the model were breed specific, and breed was also considered as fixed unknown parent groups. Evaluations were done for (1) each single breed separately (single); (2) HO and JE together (HO_JE); (3) AY, BS, and GU together (AY_BS_GU); (4) all the 5 breeds together (5_BREEDS). Initially, 15k core animals were used in APY for AY_BS_GU and 5_BREEDS, but larger core sets with more animals from the least represented breeds were also tested. The HO_JE evaluation had a fixed set of 30k core animals, with an equal representation of the 2 breeds, whereas HO and JE single-breed analysis involved 15k core animals. Validation for cows was based on correlations between adjusted phenotypes and (G)EBV, whereas for bulls on the regression of daughter yield deviations on (G)EBV. Because breed was correctly considered in the model, BLUP results for single and multibreed analyses were the same. Under ssGBLUP, predictability and reliability for AY, BS, and GU were on average 7% and 2% lower in 5_BREEDS compared with single-breed evaluations, respectively. However, validation parameters for these 3 breeds became better than in the single-breed evaluations when 45k animals were included in the core set for 5_BREEDS. Evaluations for Holsteins were more stable across scenarios because of the greatest number of genotyped animals and amount of data. Combining AY, BS, and GU into one evaluation resulted in predictions similar to the ones from single breed, especially when using about 30k core animals in APY. The results showed that single-step large-scale multibreed evaluations are computationally feasible, but fine tuning is needed to avoid a reduction in reliability when numerically dominant breeds are combined. Having evaluations for AY, BS, and GU separated from HO and JE may reduce inflation of GEBV for the first 3 breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号