首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructured ceramic matrix composite coating was prepared in-situ by reactive plasma spraying micro-sized Al-Fe2O3 composite powders. The microstructure, toughness and Vickers hardness of these coatings were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and mechanical tests. The results indicated that the coating exhibited nanostructures which consisted of FeAl2O4, Al2O3, Fe (or Fe solid solution) and a little FeAl. The composite coating showed significantly higher toughness and wear resistance than the conventional Al2O3 coating.  相似文献   

2.
《Ceramics International》2022,48(7):9286-9296
Al2O3 coating and Al2O3/Ag (10%) composite coating were prepared on the surface of GH4169 superalloy by the atmospheric plasma spraying technology. And an in-situ synthesis method was applied to introduce the Ag particles into a part of Al2O3 coatings to obtain Al2O3/Ag(synthesis) composite coating. Then, the microstructure and mechanical properties of these three Al2O3-based coatings were systematically studied in this work. In order to reveal the lubrication characteristics of Ag, their friction tests were carried out at room temperature (RT), 400 °C, 600 °C and 800 °C, respectively. The results showed that both microstructure and mechanical properties of Al2O3/Ag(synthesis) composite coating were better than that of Al2O3/Ag (10%) composite coating because many pores and cracks produced during the direct spraying. Although the friction coefficients of two kinds of composite coatings were close to that of Al2O3 coatings at RT, their wear rates were both greatly decreased due to the introduction of Ag. In addition, the lubricating performance of Ag was not enough to reduce their friction coefficients when friction temperature is lower than 600 °C. However, the friction coefficients of these composite coatings were both reduced to about 0.3 at 800 °C . At this time, the Al2O3/Ag(synthesis) composite coating also exhibited a lower wear rate because of its dense microstructure and excellent mechanical properties.  相似文献   

3.
The polyamide (PA) composite coating filled with the particles of microsized MoS2, microsized graphite, and nano‐Al2O3, respectively, were prepared by flame spraying. The friction and wear characteristics of the PA coating and composite coating filled with the varied content of filler under dry sliding against stainless steel were comparatively investigated using a block‐ring tester. The morphologies of the worn surfaces and transfer films on the counterpart steel ring were observed on a scanning electron microscope. The result showed that the addition of fillers to the composite coatings changed significantly the friction coefficient and wear rate of the coatings. The composite coatings filled with a low level content of fillers showed lower wear rate than did pure PA coating under dry sliding; especially the MoS2/PA composite coating had the lowest wear rate among these composite coatings. The composite coatings with a high level content of fillers had higher wear rate than did pure PA coating, except of the Al2O3/PA composite coating. The bonding strengths between the polymer matrix and fillers changed with the content of the fillers, which accounted for the differences in the tribological properties of the composite coatings filled with the varied content fillers. On the other hand, the difference in the friction and wear behaviors of the composite coatings and pure coating were attributed to the difference in their worn surface morphologies and transfer film characteristics. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
This paper describes a preliminary investigation of a nanocomposite ceramic coating system, based on Al2O3/SiC. Feedstock Al2O3/SiC nanocomposite powder has been manufactured using sol-gel and conventional freeze-drying processing techniques and then low pressure plasma sprayed onto stainless steel substrates using a CoNiCrAlY bond coat. Coatings of a commercial Al2O3 powder have also been manufactured as a reference for phase transformations and microstructure. The different powder morphology and size distribution resulting from the different processing techniques and their effect on coating microstructure has been investigated. Phase analysis of the feedstock powders and of the as-sprayed coatings by X-ray diffractometry (XRD) and nuclear magnetic resonance (NMR) showed that the nano-scale SiC particles were retained in the composite coatings and that equilibrium α-Al2O3 transformed to metastable γ- and δ-Al2O3 phases during plasma spraying. Other minority phases in the sol-gel Al2O3/SiC nanocomposite powder such as silica and aluminosilicate were removed by the plasma-spraying process. Microstructure characterisation by scanning electron microscopy (SEM) of the as-sprayed surface, polished cross-section, and fracture surface of the coatings showed evidence of partially molten and unmolten particles incorporated into the predominantly lamella microstructure of the coating. The extent of feedstock particle melting and consequently the character of the coating microstructure were different in each coating because of the effects of particle morphology and particle size distribution on particle melting in the plasma.  相似文献   

5.
《Ceramics International》2021,47(23):33338-33352
Niobium carbide composite coatings were prepared on titanium alloy surface by plasma spraying NbC–Al2O3, Nb–SiC and Nb–SiC–Al composite powders, respectively. The phase composition, microstructure and formation mechanism of the three composite coatings were analyzed and their microhardness, toughness and scratch resistance were compared. The phases of the NbC–Al2O3 system did not change during the plasma spraying process, and new phases (Nb2C, NbC and Nb3Si) were formed in the Nb–SiC and Nb–SiC–Al systems. TEM results of the Nb–SiC composite coating indicate that the new phases nanocrystalline Nb2C, submicron NbC and nanocrystalline Nb3Si were formed during the plasma spraying process. Compared with the NbC–Al2O3 composite coating, the microstructure of the Nb–SiC and the Nb–SiC–Al composite coatings were uniform, and the porosity were relatively low, and the hardness was higher. The Nb–SiC–Al composite coating was denser than the Nb–SiC composite coating, the lamellar structure was obvious and the number of pores in the coating was the least, which is attributed to the better molten state of the composite powder by the addition of the Al to the Nb–SiC system. The Nb–SiC–Al composite coating had better toughness and scratch resistance.  相似文献   

6.
Atmospheric plasma sprayed (APS) Al2O3-TiO2 coatings have found a wide range of industrial application due to their favorable properties, combined with low costs and a high availability. However, the detailed effect of the phase composition and the element distribution of the feedstock powders on the coating properties and the spraying process have only crudely been investigated so far. Here the impact of aluminum titanate (Al2TiO5) on the microstructural features and mechanical properties of Al2O3-40 wt.% TiO2 APS coatings is demonstrated by investigating the detailed phase composition and the distribution of aluminum and titanium in three fused and crushed feedstock powders and the respective coatings. Thereby, a direct influence of Al2TiO5 content on the deposition efficiency, the porosity, the elastic modulus, and the hardness of the coatings is revealed. The results emphasize the need for a more detailed specification of commercial Al2O3-TiO2 feedstock powders to ensure a high reliability of the coating properties.  相似文献   

7.
Al2O3-YAG (Al5Y3O12) amorphous ceramic coatings exhibit excellent crack propagation resistance under harsh wear services due to the amorphous phase contributing to the plastic deformation performance of the coating. However, the formation mechanism of the amorphous phase is ambiguous. This study mainly investigated the formation mechanism of Al2O3-YAG amorphous coating prepared by atmospheric plasma spraying from the perspective of crystallization chemistry. Nano and microsized powders with low eutectic point ratio were selected as feedstock for comparison. X-ray diffraction, scanning electron microscope, and electron backscattered diffraction were used to analyze the phase composition, morphologies, phase distribution, and structure of the coating. It is concluded that the significant thermodynamically stable structure of polycompound with high coordination numbers of cations prioritized crystallizing in the Al2O3-YAG melt, but it needed more time to crystallize and hardly crystallized in the limited time during plasma spraying. Therefore, the selection of as-sprayable powder should also be considered the critical factor for preparing amorphous coatings. The nanoscale or submicro scale powder distributed uniformly with low eutectic point ratio was chosen as the feedstock to ensure the powder droplets diffuse sufficiently during deposition.  相似文献   

8.
Nanostructured and conventional alumina–3 wt.% titania coatings were deposited by air plasma spraying (APS). The microstructure and phase composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties including hardness, adhesion strength, crack extension force (GC) and sliding wear rate were measured. Equiaxed α-Al2O3 grains were observed in the nanostructured Al2O3–3 wt.% TiO2 coating and the diameter of α-Al2O3 grains were about 150 to 700 nm in size. The microhardness of both kinds of coating was similar and about 820 HV0.2. However, the adhesion strength and crack extension force of the nanostructured coating increased by 33 and 80%, respectively, as compared with those of the conventional coating. The wear rate of the nanostructured coating was lower than that of the conventional coating. The results were explained in terms of characteristics of the powders and microstructure of the coatings.  相似文献   

9.
The microstructure and dry sliding wear performance of thermally sprayed FeCr slag coating were evaluated in comparison with those of commercially available Al2O3-13TiO2 and Cr2O3 ceramic coating powders to assess the applicability of FeCr slag (FS) powder, fabricated from industrial waste, as a ceramic top-coating material against wear. Ceramic top coats and underlying NiCoCrAlY bond coats were deposited on AISI 316L samples via atmospheric plasma spraying (APS), and their tribological properties were assessed using a ball-on-disc test rig at room temperature. As a result, FS coating exhibited the lowest worn volume, although it has the lowest surface hardness. Tribolayer formation was observed on the surface of the samples which were subjected to dry sliding wear tests. Delamination type wear is the dominant wear mechanism for Cr2O3 and FS coatings, whereas local spallation areas arising from plastic deformation were observed on the surface of Al2O3-13TiO2 coatings. The results suggested the applicability of FS powder as a candidate ceramic top coating material against wear.  相似文献   

10.
《Ceramics International》2023,49(2):1667-1677
Graphene oxide (GO) reinforced Al2O3 ceramic coatings were prepared on the surface of medium carbon steel by plasma spraying. The microstructure of the raw materials and coatings were characterized and analyzed by XPS, XRD, Raman and SEM. The bonding strength of the coatings was studied using a scratch method. The wear resistance of the coatings was assessed by the sliding test. The results showed that, after adding GO, the porosity of the coating reduced by about 31%, the hardness increased by approximately 10%, the bonding strength improved by 250%, and the wear rate reduced by 81% (Load: 30 N) and 84% (Load: 60 N), respectively.  相似文献   

11.
Nanostructured FeAl2O4-based ceramic matrix composite coatings were prepared in-situ by reactive plasma spraying micro-sized Al–Fe2O3 and Al–Fe2O3–Cr2O3 powders. The microstructure, toughness, Vickers hardness, and adhesive strength of these coatings were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and mechanical tests. The results indicated that both the coatings exhibited a nanostructured microstructure. The grains of coating AFC sprayed with Al–Fe2O3–Cr2O3 powders are finer than those of the coating AF sprayed with Al–Fe2O3 powders. The composite nano-coating sprayed with Al–Fe2O3–Cr2O3 powders exhibited higher hardness and better wear resistance compared with those of the composite nano-coating sprayed with Al–Fe2O3 powders. The adhesive strength, toughness, and wear resistance of the composite coating sprayed with Al–Fe2O3–Cr2O3 powders were significantly enhanced compared with those of the composite coating sprayed with Al–Fe2O3 powders, which were attributed to the Cr2O3 addition.  相似文献   

12.
In this work, Al2O3–13 wt% TiO2 submicron-nanostructured powders were deposited using atmospheric plasma spraying. The feedstocks were obtained by spray drying two starting suspensions of different solids content, prepared by adding nanosized TiO2 and submicron-sized Al2O3 powders to water. The spray-dried granules were heat-treated to reduce their porosity and the powders were fully characterised in both untreated and thermally treated state. Comparison with two commercial feedstocks was carried out. Characterisation allowed a temperature for the thermal treatment to be chosen on the basis of the sprayability of the feedstock and the preservation as much as possible of the submicron-sized structure of the unfired agglomerates.Optimisation of the deposition conditions enabled the reconstituted powders to be successfully deposited, yielding coatings that were well bonded to the substrate. The coating microstructure, characterised by SEM, was mostly formed by a matrix of fully molten particles where the presence of semi-molten feedstock agglomerates was also observed.Moreover, microhardness, toughness, adhesion and tribological behaviours were determined, and the impact of the granule characteristics on these properties was studied. It was found that changing the feedstock characteristics allows controlling the coating quality and properties. In general, good mechanical properties were obtained using a feedstock comprising a binary mixture of submicrometric Al2O3 and nanometric TiO2 particles in the spray-dried powder.  相似文献   

13.
《Ceramics International》2020,46(4):4556-4567
In this study, the as-received and nano-scaled oxide dispersion strengthened (ODS) MCrAlY coatings were deposited using high-velocity oxy-fuel (HVOF) spraying process. The high-energy planetary ball-milling process was utilized to prepare CeO2 and Al2O3 nanoparticles. ODS-NiCoCrAlY feedstock powders were also developed using the ball-milling process. The various formulations of Al2O3 and CeO2 nanoparticles (0.5 and 1.0 wt%) were chosen to apply different types of ODS-NiCoCrAlY coatings. The microstructure of the as-received and ODS coatings were evaluated by field emission scanning electron microscope (FESEM) as well as the commercial and ODS powders. Furthermore, the microhardness of different compositions of ODS coatings was accordingly investigated and the obtained results were compared with as-received coating. On account of the measurement of oxidation kinetics, the freestanding as-received and ODS coatings were exposed to air at 1000 °C up to 500 h and the thickness growth rate of the α-Al2O3 oxide layer was simultaneously examined. The results exemplified that NiCoCrAlY+1.0 wt% nano-CeO2+0.5 wt% nano-Al2O3 coating had a better oxidation resistance and lower oxide scale growth rate under the synergistic effects of both CeO2 and Al2O3 nanoparticles.  相似文献   

14.
《Ceramics International》2020,46(9):13711-13723
Multi-track Ti-based wear-resistant composite coatings were fabricated on TC4 alloy surfaces using laser-clad TC4 + Ni45 + Co–WC mixed powders with different Y2O3 contents (0, 1, and 3 wt%). The microstructure, microhardness, and tribological properties of the coatings were characterised using X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, electron probe X-ray micro analyser, microhardness tester, and friction and wear testing apparatus. The results showed that the number of cracks on the coating surfaces gradually decreased with the addition of Y2O3 and that residual Co–WC powders existed in the coating subsurfaces. The phase composition of the coatings with different Y2O3 contents remained unchanged and was mainly composed of reinforcing phases of TiC, TiB2, Ti2Ni, and matrix α-Ti. With the addition of Y2O3, the coating microstructure was remarkably refined, the direction characteristic of the TiC dendrites obviously weakened, and the nucleation rate significantly increased. When the added Y2O3 was 3 wt%, a large amount of TiB2–TiC-dependent growth composite phases precipitated in the coating. The two-dimensional lattice misfit between (0001)TiB2 and (111)TiC was 0.912%, which indicated that TiB2 and TiC formed a coherent interface. When the amount of Y2O3 was increased, the microhardness of the coatings gradually decreased, and the wear volume of the coatings first increased and then decreased. Under the effect of the TiB2–TiC composite phases, the wear resistance of the 3 wt% Y2O3 coating was optimal. The 3 wt% Y2O3 coating friction coefficient was the lowest, and the wear mechanism was abrasive wear.  相似文献   

15.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   

16.
Powder particle diameters currently used for spraying are generally between 5 and 100 μm with a preferred size range around 40–60 μm. Future trends in plasma spraying involve the use of fine or ultrafine powders and the reduction of the number of steps between raw material preparation and coating. The use of non-sintered spray dried ceramic aggregates as feedstock material for plasma spraying has accordingly been investigated. Al2O3 based coatings were prepared by this route of dried particle plasma spray (DPPS). The microstructure and crystallographic phases of these deposits were characterised using scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Given the intimate mixing of the starting oxides, reactions occur during spraying leading to the formation of spinel (MgAl2O4 and/or ZnAl2O4) and zinc aluminum oxide (Zn4Al22O37). The layered structure of the deposit is characteristic of conventional plasma-sprayed coatings but the features are smaller in size. Depending on the operating conditions (plasma characteristics and powder injection), two different melting modes of the particles were identified; the first leads to individual well-melted droplets that splash regularly even if generating some fingers and the second leads to aggregates that are well-melted on their outer parts and strengthened in their cores.  相似文献   

17.
Magnesium aluminate, MgAl2O4, spinel powders for thermal spraying, were synthesized from secondary raw materials by spray drying and subsequent reaction sintering. Talc ore mining tailings and aluminium hydroxide precipitate from aluminium anodizing process were studied. A stoichiometric MgAl2O4 spinel coating was prepared as a reference using pure raw materials. Atmospheric plasma spraying resulted in the formation of ceramic coatings. Microstructural investigations revealed that the reference coatings exhibited crystalline lamellar microstructure of MgAl2O4 but secondary coatings contained amorphous areas between the crystalline MgAl2O4 clusters. Abrasive wear test results revealed considerably lower wear rate for secondary coatings. It is suggested that the different structure of coatings, particularly the high degree of amorphous phase between the isolated crystalline MgAl2O4 clusters caused the higher abrasive wear resistance by changing the wear mechanism. The dielectric breakdown strength of the secondary coatings were at the same level, 24 V/μm, as compared to reference coating, 23 V/μm.  相似文献   

18.
This paper aims to experimentally investigate the effect of graphene nanoplatelets (GNPs) doped Al2O3 coating deposited on the surface of cemented carbide substrate using suspension high velocity oxy fuel (SHVOF) thermal spraying technique. Scanning electron microscopy was applied to characterize GNPs doped Al2O3 feedstock, the surface morphologies of cemented carbide before and after spraying, and the wear track morphology of cemented carbide after wear tests. The phases of GNPs doped Al2O3 feedstock, uncoated and coated cemented carbide were analyzed by X-ray diffraction. The existence of GNPs was analyzed by Raman spectroscopy. A mixture of un-molten and molten splats formed on the surface of cemented carbide substrate after SHVOF thermal spray. The average coefficient of friction (CoF) of coated samples was slightly lower than that of uncoated samples, which might be due to the friction-reduction effect of GNPs. The wear rate of the samples was one order of magnitude higher than that of the alumina ball, showing that the wear of samples was the main wear between the friction couples. The wear mechanism of uncoated sample was mainly fatigue spalling, and that of cemented carbide substrate coated with GNPs doped Al2O3 coating was mainly plowing and abrasive wear.  相似文献   

19.
The wear resistance of chromium oxide (Cr2O3) coatings could be improved by doping modification and changing the structural scale, etc. In this study, micrometric Cr2O3 coatings were doped with different additives, CeO2 and Nb2O5. Moreover, Cr2O3 coatings were deposited from nanostructured feedstock by the combination process of plasma spraying and dry-ice blasting. The correlation between the microstructure, chemical components and tribological properties of plasma-sprayed Cr2O3-based coatings was discussed based on the investigation of their porosity, hardness and friction behaviors. The results showed that the composite coatings doped with additives exhibited a higher microhardness, corresponding to a lower porosity than pure Cr2O3 coating under the identical plasma-spray condition. CeO2 constituent was found to improve the wear resistance of Cr2O3 coating while Nb2O5 incorporation corresponds to a steep rise in the friction coefficient. The mismatch of coefficient of thermal expansion (CTE) between Cr2O3 and Nb2O5 lamellae facilitated the origin of fatigue cracks and the formation of microfracture pits. Although the combination process promotes a porosity reduction, the nanostructured Cr2O3 (n-Cr2O3) coatings present a lower microhardness than micrometric coatings, due to their loosen microstructure from insufficient plasma power compared to microscaled coatings. The wear mechanisms of both the micro- and nanometric Cr2O3 coatings are fatigue cracks and material transfer.  相似文献   

20.
Plasma spray coating with ceramic carbide is a promising approach for improving the surface quality of the materials. In this work, the effectiveness of tungsten carbide (WC), chromium carbide (Cr3C2), and the composite coating of the two powders in the weight ratio of 50:50 were investigated. In the erosion test, aluminum oxide (Al2O3) particles were combined with a high-speed air-jet and impinged at 90° on the top surface of the material. Electrochemical polarization and electrochemical impedance spectroscopy studies were conducted with a 3.5 wt.% of sodium chloride (NaCl) solution as the electrolyte. Using a scanning electron microscope, the surface morphology of powders and coatings, as well as the mechanisms of erosion and corrosion, were studied. Energy-dispersive X-ray analysis and X-ray diffractometry were used to reveal the composition and elemental distribution of the feedstock powders and coatings. Because of the presence of hard phases, the composite coating shows the highest average microhardness of 1350.2 HV. The composite coating exhibits improved erosive wear resistance with an increase in erodent exposure time. The Cr3C2 coating has a reduced corrosion current density of 1.404 × 10−5 mA/cm2 and a higher charge transfer resistance of 2086.75 Ω cm2 due to passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号