首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(9):11161-11164
The effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the sintering characteristics and microwave dielectric properties of (Zn0.95Co0.05)2SiO4 were investigated in this study. (Zn0.95Co0.05)2SiO4 powders were fabricated by traditional solid-state preparation, and LBBS glass was synthesised by quenching method. The LBBS glass can effectively reduce the sintering temperature of (Zn0.95Co0.05)2SiO4 from 1300 °C to 900 °C and thus promote the densification and uniformity of the specimens. XRD patterns indicated that no other secondary phases existed in our doping range (0–2 wt%). To obtain the highest sintering density and a uniform microstructure when the samples were sintered at 900 °C, the optimal doping content was set to be 1.5 wt%. The sample also demonstrated the following excellent microwave dielectric properties: ɛr=6.16, Qf=33,000 GHz and τf=−59 ppm/°C.  相似文献   

2.
《Ceramics International》2016,42(14):15242-15246
In this work, 0.86CaWO4–0.14Li2TiO3 ceramics were prepared via a traditional solid-state process. The effects of Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) addition on the phase formation, sintering character, microstructure and microwave dielectric properties of the ceramics were investigated. A small amount of LBSCA addition could effectively lower the sintering temperature of the ceramics. X-ray diffraction analysis revealed that CaWO4 and Li2TiO3 phases coexisted without producing any other crystal phases in the sintered ceramics. The dielectric constant and Qf values were related to the amount of LBSCA addition and sintering temperatures. All specimens could obtain near-zero temperature coefficient (τf) values through the compensation of the positive τf of Li2TiO3 and the negative τf of CaWO4. The 0.86CaWO4–0.14Li2TiO3 ceramic with 0.5 wt% LBSCA addition and sintered at 900 °C for 3 h exhibited excellent microwave dielectric properties of εr=12.43, Qf=76,000 GHz and τf=−2.9 ppm/°C.  相似文献   

3.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

4.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

5.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

6.
The authors have developed a new LTCC material with characteristics of high dielectric constant (ɛr), high quality factor (Q) and low temperature coefficient of capacitance (TCC). This material can be co-fired with a conventional base LTCC material and buried resistors with low temperature coefficient of resistance (TCR). The base material which consists of Al2O3 filler and glass, has low ɛr of 8.7 at 3 GHz. The newly developed LTCC material, which consists of Ba–(Re)–Ti–O filler, Al2O3 filler, and glass, has the following characteristics of ɛr of 15.1, Q of 900 at 3 GHz, and TCC of −10 ppm/K. The buried resistors consist of RuO2 and glass. Two different LTCC materials, a resistor material and a silver electrode paste can be co-fired as multi-layer substrates and are regarded as a new LTCC system.Constrained sintering could be applied to this LTCC system and the dimensions of substrates could be controlled with quite high accuracy. This LTCC system is expected to contribute to further miniaturization of RF circuits and the reduction of electrical loss.  相似文献   

7.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

8.
The effects of Ni substitution for Zn on microwave dielectric properties of (Zn1−xNix)3Nb2O8 (x = 0.02–0.08) ceramics were investigated in this study. The XRD patterns of the sintered samples reveal single-phase formation with a monoclinic structure. The tremendous improvement of Q × f value can be achieved by a small level of Ni substitution (x = 0.05). The τf value was found to decrease with a decreasing A-site bond valence. In addition, B2O3 and CuO were used as a sintering aid to lower the sintering temperature from 1180 to 900 °C. Excellent microwave dielectric properties (ɛr  20.7, Q × f  98,000 GHz and τf  −85.2 ppm/°C) and a chemical compatibility with Ag electrodes can be obtained for 4 wt% B2O3–CuO doped (Zn0.95Ni0.05)3Nb2O8 ceramics sintered at 930 °C for 2 h. This constitutes a very promising material for LTCC applications.  相似文献   

9.
Willemite ceramics (Zn2SiO4) have been successfully prepared in the temperature range from 1280 to 1340 °C. It is found that willemite ceramics possess excellent millimeter-wave dielectric properties: a dielectric constant ɛr value of 6.6, a quality factor Q × f value of 219,000 GHz and a temperature coefficient of resonant frequency τf value of −61 ppm/°C. By adding TiO2 with large positive τf value (450 ppm/°C), near zero τf value can be achieved in a wide sintering temperature range. With 11 wt% of TiO2, an ɛr value of 9.3, a Q × f value of 113,000 GHz, and a τf value of 1.0 ppm/°C are obtained at 1250 °C. The relationships between microstructure and properties are also studied. Our results show that willemite with appropriate TiO2 is an ideal temperature stable, low ɛr and high Q × f dielectric for millimeter-wave application.  相似文献   

10.
BN/SiCO composite ceramics having a dielectric constant, ɛr, as low as 1.9 have been made by pyrolysis of filled gels at temperature ≥1000 °C. Such a low value of ɛr is supposed to be due to a combination of factors: the low ɛr of BN and of SiCO itself and the high amount of residual porosity present in the samples. The porous microstructure – and the related dielectric properties – obtained at 1000 °C show a very good stability up to 1400 °C. This result has been ascribed to the high viscosity of the SiCO glass and to the platelet shape particles of BN. Both factors hinder the sintering and prevent the closure of the pores.  相似文献   

11.
The copper-niobates, M2+Cu2Nb2O8 (M2+ = Zn, Co, Ni, Mg or Ca) have good microwave dielectric properties when sintered between 985–1010 °C and 1110 °C for CaCu2Nb2O8. Therefore, they would be potential dielectric LTCC materials if they could be made to sinter below 960 °C (melting point of silver). To this end, additions of 3 wt.% V2O5 were made to ZnCu2Nb2O8, CoCu2Nb2O8, NiCu2Nb2O8, MgCu2Nb2O8 and CaCu2Nb2O8, and their sintering and dielectric behaviour was investigated for samples fired between 800 and 950 °C. Doping lowered sintering temperatures to below the 960 °C limit in all cases. Doping had the general effect of reducing ɛr, density, Qf and τf, although doped CaCu2Nb2O8 had a Qf value of 9300 GHz, nearly four times that of the best undoped sample. Doped ZnCu2Nb2O8 fired to 935 °C had Qf = 10,200 GHz, and for doped CoCu2Nb2O8 fired to 885 °C Qf = 7500 GHz. When doped and undoped samples all fired to 935 °C were compared, all doped samples had greater ɛr and density, and all except ZnCu2Nb2O8 had a smaller τf. All doped samples had a more linear relationship between frequency and temperature in the range 250–300 K.  相似文献   

12.
Low-fired ferroelectric glass ceramics were fabricated from glass powders with a basic composition of 0.65BaTiO3·0.27SiO2·0.08Al2O3. The combined addition of SnO2 (or ZrO2) and SrCO3 was conducted to modify the dielectric properties of the glass ceramics. The Sr-component could be incorporated preferentially in the perovskite structure after heating at 1000 °C. The bulk and thick film samples obtained by sintering glass powder with a starting composition of 0.65(Ba0.7Sr0.3)(Ti0.85Sn0.15)O3·0.27SiO2·0.08Al2O3 at 1000 °C for 24 h showed a broadened ɛrT relation with Tc  10 °C and ɛr(max)  280 and microwave tunability of 32% at 3 GHz, respectively.  相似文献   

13.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

14.
《Ceramics International》2016,42(5):6005-6009
Li2MnO3 ceramics co-doped with 2 wt% LiF and x wt% TiO2 (x=0, 3, 5, 7, 10) were prepared by solid-state reaction for low-temperature co-fired ceramics (LTCC) applications. The sintering temperatures of Li2MnO3 ceramics were successfully lowered to 925°C due to the formation of a LiF liquid phase. Their temperature stability was improved by doping with TiO2. A typical Li2MnO3-2 wt% LiF-5 wt% TiO2 sample with well-densified microstructures displayed optimum dielectric properties (εr=13.8, Q×f= 23,270 GHz, τf=1.2 ppm/°C). Such sample was compatible with Ag electrodes, which suggests suitability of the developed material for LTCC applications in wireless communication systems.  相似文献   

15.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

16.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

17.
《Ceramics International》2015,41(6):7783-7789
YAG ceramics with good dielectric properties were prepared via a modified pyrolysis method, with yttrium nitrate as the yttrium source and combined aluminium sulphate and aluminium nitrate as aluminium sources, and subsequent sintering in a muffle furnace. The effects of the different aluminium sources on the powder characteristic and the impact of sintering temperature, sintering aids (TEOS) and additive (TiO2) on the dielectric properties of the ceramics were studied. The results show that well-dispersed pure YAG nano-powders can be obtained after calcination at 1000 °C with an aluminium sulphate and aluminium nitrate molar ratio of 1.5:2. The relative density, permittivity (εr) and quality factor (Q×f) of the YAG ceramics increase with sintering temperature and TEOS addition. TiO2 can greatly promote τf to near-zero but decreases Q×f. The relative density, εr, Q×f and τf of the YAG–1 wt% TEOS–1 wt% TiO2 ceramic obtained at 1520 °C are 97.6%, 9.9, 71, 738 GHz and −30 ppm/°C, respectively.  相似文献   

18.
The microwave dielectric properties of LiNb3O8 ceramics were investigated as a function of the sintering temperature and the amount of TiO2 additive. LiNb3O8 ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ɛr) of 34, a quality factor (Q × f0) of 58,000 GHz and a temperature coefficient of resonance frequency (τf) of −96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO2 content increased in the LiNb3O8–TiO2 system, ɛr and τf of the material were increased due to the mixing effect of TiO2 phase, which has higher dielectric constant and larger positive τf. The 0.65LiNb3O8–0.35TiO2 ceramics showed a dielectric constant ɛr of 46.2, a quality factor (Q × f0) of 5800 GHz and a temperature coefficient of resonance frequency τf of near to 0 ppm/°C.  相似文献   

19.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

20.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号