首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermally conductive and electrically insulating composite filler was produced by surfactant assisted sol–gel coating of amorphous silica on flake graphite. Amorphous silica-coated graphite (a-Si coated grp) obtained using a cationic surfactant showed the best enhancement of the insulating coating. The resulting a-Si coated grp/boehmite/polybutylene terephthalate polyester resin composite exhibited a high volume resistivity, exceeding 1.0 × 1014 Ω cm at an applied voltage of 500 V, and a thermal conductivity of 3.3 W/m K at 22.9 vol.% a-Si coated grp loading. The heat releasing performance of the developed resin composite in actual light-emitting diodes bulb housings was compared with conventionally used thermally and electrically conductive resin. This comparison revealed that the new composite released heat more effectively. This innovative technology, which may solve the trade-off between material properties and cost, will be available for a broad range of thermally conductive resin applications that simultaneously require thermal conduction and electrical insulation.  相似文献   

2.
《Ceramics International》2016,42(12):14077-14085
Porous alumina and zirconia preforms, processed by ice templating, have been used to manufacture ceramic/metal composites by aluminium alloy infiltration. The aim of the present work is to study the influence of the ceramic material nature and of the initial porous structure on the thermal conductivity anisotropy of the composite in order to assess potential applications in the field of thermal management. The materials are characterised in terms of pore volume fraction and pore size before and after metal infiltration. The freeze casted preforms exhibit anisotropic lamellar structures with ellipsoidal pores ranging from 35 µm to 40 µm and porosity fractions from 64 to 67%. After metal infiltration, composite parts present the same anisotropic morphology, which correspond to alternating ceramic and metal layers. Thermal conductivities have been determined, with an average of 80 W m−1 K−1 and 13 W m−1 K−1 parallel and perpendicular to the freezing direction respectively, for zirconia/metal composites. Theoretical values of thermal conductivity can be calculated using the Maxwell-Eucken relation, to handle the residual porosity, in combination with series and parallel resistance models to describe the overall anisotropic character. These give good agreement to experiment.  相似文献   

3.
《Dyes and Pigments》2008,76(3):714-722
A novel sol–gel-derived titanium dioxide nanostructure composite has been prepared by spin-coating and investigated for the purpose of producing films. The processing of the composite sol–gel photocatalysts involved utilizing of precalcinated nanopowder titanium dioxide as filler mixed with sol and heat treated. The sol solution was prepared by adding titanium tetra isopropoxide (Ti(OPr)4 or TTP) to a mixture of ethanol and HCl 35.5% (mole ratio TTP:HCl:EtOH:H2O = 1:1.1:10:10), then a solution of 2 wt% methylcellulose was added and stirred at room temperature. Precalcinated TiO2 nanopowder was dispersed in the sol and the prepared mixture was deposited on the microscope glass slide by spin-coating. The inhomogeneity problem in preparation of composite film which causes peeling off and cracking after calcination due to the shrinkage of the films with thermal treatment were overcome by using methylcellulose (MC) as a dispersant. The composite heat treated at approximately 500 °C has the greatest hardness value. Surface morphology of composite deposits by scanning electron microscopy (SEM) showed remarkable increase in the composite surface area. Evaluation of the adhesion and bonding strength between the coating and substrate was carried out by the scratch test technique. The minimum load which caused the complete coating removal, for composite thick film was 200 g/mm2 which indicates a strong bond to the substrate. Photocatalytic activity of the composite film was evaluated through the degradation of a textile dye, Light Yellow X6G (C.I. Reactive Yellow 2) as a model pollutant and were compared with those of similar composite thick film without MC, thin film of TiO2 and TiO2 nanopowder. The results show that the photocatalytic activity and stability of the composite films are higher than those of nanopowder TiO2. However, a remarkable increase in the composite surface and good mechanical integrity make this composite film a viable alternative for commercial applications.  相似文献   

4.
Silica-coated graphite flakes, which have electrical insulating property and high thermal conductivity, were synthesized by a polyvinylpyrrolidone (PVP)-assisted sol–gel reaction. The critical role of keto-enol tautomerism of PVP in base-catalyzed silica sol–gel reaction was elucidated. The degree of silica coating on graphite was controlled by the amount of PVP and silica precursor, tetraethyl orthosilicate. The silica-coated graphite was used as a filler in thermoplastic polyester elastomer (TPEE). The in-plane (Λ) and through-plane (Λ) thermal conductivity values of silica-coated graphite/TPEE composites are 67.5% and 86.6% of those of raw graphite/TPEE at 80 phr loading. Even after a severe mixing process under high shear at elevated temperature, silica-coated graphite/TPEE composites retain the perfectly insulating surface resistivity of >1013 Ω/sq up to high filler contents.  相似文献   

5.
《Ceramics International》2015,41(8):9488-9495
The ceramic/polymer composites based on epoxy-terminated dimethylsiloxane (ETDS) and boron nitride (BN) were prepared for use as thermal interface materials (TIMs). 250 µm-sized BN was used as a filler to achieve high-thermal-conductivity composites. To improve the interfacial adhesion between the BN particles and the ETDS matrix, the surface of BN particles were modified with silica via the sol–gel method with tetraethyl orthosilicate (TEOS). The interfacial adhesion properties of the composites were determined by the surface free energy of the particles using a contact angle test. The surface-modified BN/ETDS composites exhibited thermal conductivities ranging from 0.2 W/m K to 3.1 W/m K, exceeding those of raw BN/ETDS composites at the same weight fractions. Agari׳s model was used to analyze the measured thermal conductivity as a function of the SiO2-BN concentration. Moreover, the storage modulus of the BN/ETDS composites was found to increase with surface modification of the BN particles.  相似文献   

6.
The feasibility of low permittivity Sr2Al2SiO7 (SAS) ceramic filled high density polyethylene (HDPE) composites for substrate and packaging applications has been investigated in this paper. The composites were prepared by the melt mixing and hot pressing techniques. Scanning electron microscopic images of SAS filled HDPE showed the increased connectivity with filler loading. The composites showed excellent relative density (>98%) with low bulk density (<2.40 g cm?3) and very low moisture absorption (<0.10 wt%). The relative permittivity (εr) and the dielectric loss (tan δ) at 1 MHz and at 5 GHz were found to be low and found to increase with filler volume fraction (Vf). The experimentally observed relative permittivity at 5 GHz was correlated with the values proposed by different theoretical models. Among them, effective medium theory (EMT) gave better fit with experimental values except at the highest filler loading (0.50 Vf). Improvement in the thermal properties was also observed with filler content. The coefficient of linear thermal expansion (CTE) was found to decrease with filler content. Thermal conductivity (TC) of the composite was greatly enhanced as a function of filler volume fraction. The composite with 0.50 filler volume fraction showed balanced thermal and dielectric properties with εr=4.2, tan δ=3.9×10?3, TC=2.2 W m?1 K?1 and CTE=101 ppm/°C.  相似文献   

7.
《Ceramics International》2016,42(12):13796-13804
Recently, porous ceramic membranes have become a subject of significant interest due to their outstanding thermal and chemical stability. To reduce the high manufacturing costs of these porous ceramic membranes, recent research has focused on the utilization of inexpensive natural materials. However, there have not been any well-established direct comparisons of the membrane properties between typical alumina-based membranes and novel natural material-based membranes. Therefore, we compared alumina-coated alumina support layers (with average pore sizes ranging from 0.10 µm ~0.18 µm), alumina-coated diatomite-kaolin composite support layers (with an average pore size of 0.12 µm), and alumina-coated pyrophyllite-diatomite composite support layers (with an average pore size of 0.11 µm) via the dip-coating method and subsequent heat treatment ranging from 1200 °C–1400 °C for 1 h. The pure water permeability of the alumina-coated diatomite-kaolin composite support layer and the alumina-coated pyrophyllite-diatomite composite support layer was found to be approximately 2.0×102 L m−2 h−1 bar−1, which is similar to that of an alumina-coated alumina support layer. Therefore, we suggest that the average pore size of an alumina-coated natural material-based support layer can be effectively controlled while exhibiting acceptable water permeability.  相似文献   

8.
Bio-carbon template (charcoal) was prepared by carbonizing pine wood at 1200 °C under vacuum, and was impregnated with phenolic resin/SiO2 sol mixture by vacuum/pressure processing. Porous SiC ceramics with hybrid pore structure, a combination of tubular pores and network SiC struts in the tubular pores, were fabricated via sol–gel conversion, carbonization and carbothermal reduction reaction at elevated temperatures in Ar atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification and microstructural changes during the C/SiO2 composites-to-porous SiC ceramic conversion. Experimental results show that the density of C/SiO2 composite increases with the number of impregnation procedure, and increases from 0.32 g cm−3 of pine-derived charcoal to 1.5 g cm−3 of C/SiO2 composite after the sixth impregnation. The conversion degree of charcoal to porous SiC ceramic increases as reaction time is lengthened. The resulting SiC ceramic consists of β-SiC with a small amount of α-SiC. The conversion from pine charcoal to porous SiC ceramic with hybrid pore structure improves bending strength from 16.4 to 42.2 MPa, and decreases porosity from 76.1% to 48.3%.  相似文献   

9.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

10.
《Ceramics International》2017,43(2):1755-1761
A high thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composite (IPC) with three dimensional mutually interpenetrated structure was fabricated by mold-forming and pressureless infiltration method. Al-15Si-10Mg was used as the infiltration aluminum alloy. The obtained composite was treated with a T6 procedure. The composed phases, microstructure, thermal conductivity, mechanical strength and fractography of the prepared 3D-SiC/Al-Si-Mg IPC were either analyzed or measured with X-ray diffraction (XRD), optical metallography, laser thermal conductivity instrument, universal testing machine, field emission electron scanning microscopy (SEM) with energy dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and etc. The results showed that both SiC ceramic and aluminum alloy phases distribute evenly and form a three-dimensional mutually interpenetrated structure in the obtained IPC. No clear brittle and harmful Al4C3 phase was found in the composite. The obtained IPC contains a SiC volume fraction of 67 vol% and has the properties of a density of 3.02 g/cm2, a thermal conductivity of 233.6 W/(m °C), a thermal expansion coefficient (RT~300 °C) of 7.03×10−6/°C and a bending strength of 288 MPa.  相似文献   

11.
The effects of β-Si3N4 whiskers on the thermal conductivity of low-temperature sintered borosilicate glass–AlN composites were systematically investigated. The thermal conductivity of borosilicate glass–AlN ceramic composite was increased from 11.9 to 18.8 W/m K by incorporating 14 vol% β-Si3N4 whiskers, and high flexural strength up to 226 MPa were achieved along with low relative dielectric constant of 6.5 and dielectric loss of 0.16% at 1 MHz. Microstructure characterization and percolation model analysis indicated that thermal percolation network formation in the ceramic composites led to the high thermal conductivity. The crystallization of the borosilicate microcrystal glass also contributed to the enhancement of thermal conductivity. Such ceramic composites with low sintering temperature and high thermal conductivity might be a promising material for electronic packaging applications.  相似文献   

12.
Hyungu Im  Jooheon Kim 《Carbon》2012,50(15):5429-5440
Thermally conductive graphene oxide (GO)–multi-wall carbon nanotube (MWCNT)/epoxy composite materials were fabricated by epoxy wetting. The polar functionality on the GO surface allowed the permeation of the epoxy resin due to a secondary interaction between them, which allowed the fabrication of a composite containing a high concentration of this hybrid filler. The thermal transport properties of the composites were maximized at 50 wt.% of filler due to fixed pore volume fraction in filtrated GO cake. When the total amount of filler was fixed 50 wt.% while changing the amount of MWCNTs, a maximum thermal conductivity was obtained with the addition of about 0.36 wt.% of MWCNTs in the filler. Measured thermal conductivity was higher than the predicted value based on the by Maxwell–Garnett (M–G) approximation and decreased for MWCNT concentrations above 0.4%. The increased thermal conductivity was due to the formation of 3-D heat conduction paths by the addition of MWCNTs. Too high a MWCNT concentration led to increased phonon scattering, which in turn led to decreased thermal conductivity. The measured storage modulus was higher than that of the solvent mixed composite because of the insufficient interface between the large amount of filler and the epoxy.  相似文献   

13.
Highly porous Ca3Co4O9 thermoelectric oxide ceramics for high-temperature application were fabricated by sol–gel synthesis and subsequent conventional sintering. Growth mechanism of misfit-layered Ca3Co4O9 phase, from sol–gel synthesis educts and upcoming intermediates, was characterized by in-situ X-ray diffraction, scanning electron microscopy and transmission electron microscopy investigations. The Ca3Co4O9 ceramic exhibits a relative density of 67.7%. Thermoelectric properties were measured from 373 K to 1073 K. At 1073 K a power factor of 2.46 μW cm−1 K−2, a very low heat conductivity of 0.63 W m−1 K−1 and entropy conductivity of 0.61 mW m−1 K−2 were achieved. The maintained figure of merit ZT of 0.4 from sol–gel synthesized Ca3Co4O9 is the highest obtained from conventional, non-doped Ca3Co4O9. The high porosity and consequently reduced thermal conductivity leads to a high ZT value.  相似文献   

14.
Diamond/Ag–Ti composites were fabricated by a low-cost liquid sintering technique. The Ti addition can effectively improve wetting and promote penetration in composite pores during liquid sintering. The interface structure of the diamond/Ag–Ti composite was identified as Ag/TiC/Ag–Ti/diamond. A high thermal conductivity of 719 W/mK was obtained for the 50 vol.% diamond/Ag-1 at.% Ti composite. Using a bimodal mixture (60 vol.% 150 μm + 10 vol.% 50 μm diamond/Ag-2 at.% Ti composite), a low coefficient of thermal expansion of 6.3 × 10 6/K still with high thermal conductivity of 687 W/mK was achieved. These composites have potential applications for thermal management of high integration electronic devices.  相似文献   

15.
In this study, a triple-layer thermal barrier coating (TBC) of Cu-6Sn/NiCrAlY/YSZ was deposited onto a carbon-fiber reinforced polyimide matrix composite. Effects of different thicknesses of YSZ ceramic top coat and NiCrAlY intermediate layer on microstructural, mechanical and thermal shock properties of the coated samples were examined. The results revealed that the TBC systems with up to 300 µm top coat thicknesses have clean and adhesive coating/substrate interfaces whereas cracks exist along coating/substrate interface of the TBC system with 400 µm thick YSZ. Tensile adhesion test (TAT) indicated that adhesion strength values of the coated samples are inversely proportional to the ceramic top coat thickness. Contrarily, thermal shock resistance of the coated samples enhanced with increase in thickness of the ceramic coating. Investigation of the TBCs with different thicknesses of NiCrAlY and 300 µm thick YSZ layers revealed that the TBC system with 100 µm thick NiCrAlY layer exhibited the best adhesion strength and thermal shock resistance. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.  相似文献   

16.
Huang Wu  Lawrence T. Drzal 《Carbon》2012,50(3):1135-1145
Paper forms (i.e. thin free-standing films) of carbon-based materials have received increasing attention. Here we present a novel approach to fabricating a binder free, self-standing flexible paper consisting of exfoliated graphite nanoplatelets (GNPs). It is found that the electrical conductivity of the GNP paper can be as high as 2200 S cm?1 and the thermal conductivity reaches 313 W m?1 K?1. Both thermoset and thermoplastic matrices were used to impregnate the porous GNP paper and an extremely high tensile modulus was attained. Even with 30 vol.% polymer, the GNP paper composite can still exhibit ~700 S cm?1 electrical conductivity thanks to the highly continuous GNP network formed in the paper making process. The impregnated GNP paper was also investigated as a component in carbon fiber composite. It is found that when inserted into a layered laminate composite construction, gas permeability can be severely reduced and electrical and thermal conductivity can be greatly enhanced.  相似文献   

17.
Biomorphic porous SiC composite ceramics were produced by chemical vapor infiltration and reaction (CVI-R) technique using paper precursor as template. The thermal conductivity of four samples with different composition and microstructure was investigated: (a) C-template, (b) C-SiC, (c) C-SiC–Si3N4 and (d) SiC coated with a thin layer of TiO2. The SiC–Si3N4 composite ceramic showed enhanced oxidation resistance compared to single phase SiC. However, a key property for the application of these materials at high temperatures is their thermal conductivity. The later was determined experimentally at defined temperatures in the range 293–373 K with a laser flash apparatus. It was found that the thermal conductivity of the porous ceramic composites increases in the following order: C-template < C-SiC < C-SiC–Si3N4 < SiC–TiO2. The results were interpreted in regard to the porosity and the microstructure of the ceramics.  相似文献   

18.
High styrenic sulfonated polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene (S-polySEPS) containing 65% styrene groups was prepared by sulfonation at the phenyl group. Also, S-polySEPS/clay composite film was produced by mixing organic clay with S-polySEPS in organic blending solvent (THF/DCE/IPA). The proton conductivity of the pure S-polySEPS film and S-polySEPS/clay composite films was ranged from 10?2 to 10?1 S cm?1. In particular, the S-polySEPS/clay 1 wt% composite film was shown higher proton conductivity, higher ion exchange capacity (IEC) and lower water uptake than Nafion® 117 membrane. However, the proton conductivity of the S-polyseps/clay composite films slightly was decreased with increasing the contents of organic clay. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of S-polySEPS/clay composite films. The 1H NMR and FT-IR analysis is used to verify the sulfonation reaction on the phenyl groups of S-polySEPS. The micro-phase separated images and dispersed organic clay state of the prepared films were confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD).  相似文献   

19.
Epoxy resin is used as a material for electrical and electronics molding in various forms but its thermal conductivity must be controlled with various additives on account of its lower conductivity than metal or ceramics. Silicon dioxide (SiO2) and silica were selected as the reinforcement and diluent filler for epoxy resins, respectively. The optimum amount of reinforcement filler, SiO2, was 50 wt%. The thermal properties and thermal stability were observed according to silica ratio and particle size. An epoxy modified with a polyamide type hardener showed superior thermal conductivity to that modified with a cyclo-aliphatic amine type hardener. The thermal conductivity increased with increasing silica ratio and particle size. The thermal stability evaluation based on the particle size of silica was in the order of 14/18 mesh (1.00–1.16 mm) > 8/10 mesh (1.65–2.36 mm) > 28/35 mesh (0.42–0.59 mm). The optimum silica size of the diluent filler was 14/18 mesh (1.00–1.16 mm). An epoxy type resin transformer with excellent thermal properties and thermal stability could be designed when the mixing weight of epoxy resin was equal to that of the hardener.  相似文献   

20.
《Ceramics International》2017,43(12):8564-8571
For the purpose of building energy-saving, a novel one-piece wall ceramic board was prepared by using fly ash and ceramic waste as the main raw materials for its matrix part and foam part, respectively. The effects of raw material composition, sintering temperature on the macro and micro properties were systematically investigated. The optimum parameter for the matrix part was obtained at 1220 °C with 70 wt% fly ash and 4 wt% quartz, while that for the foam part was 1220 °C with 97 wt% ceramic waste and 3 wt% silicon carbide. For the matrix sample, the highest rupture modulus reaches 53.97 MPa, and the corresponding water absorption capacity and thermal conductivity are 1.08% and 0.54396 W/(m K), respectively. For the foam part, the best bulk density and thermal conductivity are 443 kg/m3 and 0.10528 W/(m K), respectively. Subsequently, the optimal matrix and foam samples were introduced into the co-fired process (1220 °C), and the results show that the new method for the preparation of one-piece wall ceramic board was fully acceptable. Furthermore, the simulated results indicate that the proposed one-piece wall ceramic board can efficiently reduce the thermal bridges and exerts excellent energy conservation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号