首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173?m2 g?1) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473?F?g?1 at 0.25?A?g?1, which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.  相似文献   

2.
酪素/蒙脱土插层复合物制备及其耐水性能研究   总被引:3,自引:1,他引:3  
在十六烷基季胺盐存在下进行蒙脱土插层得到[H4N(CH2)15CH3]+-蒙脱土插层物,酪素加热溶解后与[H4N(CH2)15CH]+-蒙脱土插层物混合,保温复合,然后沉淀分离,得到干酪素/蒙脱土纳米复合物。用XRD,TEM和TGA表征酪素纳米复合物的结构与性能。结果表明,插层复合物中蒙脱土晶片间距扩大,插层复合物耐热性能明显提高,与纯酪素相比,复合物拥有极好的耐水性能,特别适用于制备高速高性能啤酒生产线用贴标胶。  相似文献   

3.
《应用陶瓷进展》2013,112(5):280-286
Abstract

Abstract

Waste mussel shells from the New Zealand aquaculture industry have been investigated as a potential source of lime for use in waste water treatment. The calcination of raw mussel shells to lime was studied as a function of particle size, temperature, heating rate, treatment time and atmosphere. Lime formation went through a maximum with respect to particle size for all heating conditions, as a result of competition between increased surface area and a tendency for particle to form necks resulting in caking. Optimised heat treatment conditions resulted in transformations of more than 95%. Preliminary experiments to investigate removal of phosphates from model waste water solutions showed that raw shells had limited ability due to a mechanism that relies on adsorption only. For these raw materials the finer particle sizes removed more phosphate due to increased surface area. The heat treated mussel shells on the other hand were shown to remove greater than 95% of the phosphates for both fine and coarse size ranges due to a precipitation mechanism of phosphate removal. This work demonstrates the potential for using mussels as an alternative to limestone for phosphate removal, at the same time overcoming the expensive and problematic issues of waste disposal.  相似文献   

4.
Tests of degradation in a photocatalytic membrane system with the lamp immersed in the suspension inside the photoreactor have been carried out by using polycrystalline TiO2 (Degussa P25) as catalyst and humic acids, organic dyes, 4-nitrophenol as pollutants. The influence of the type of nanofiltration membrane, initial concentration of pollutant and pH on the photodegradation rate was investigated in discontinuous and continuous configurations.

Two membranes were tested, i.e. NF-PES-010 (Celgard, Germany) of polyethersulphone and NTR-7410 (Nitto-Denko, Japan) of sulphonated polyethersulphone. The last one was chosen for all of the photoreactivity experiments because permeability and rejection tests indicated that it was able to hold both catalyst and small molecules carrying the same membrane charge (negative), thanks to the Donnan Exclusion.

Despite the fluxes ranged between 20 and 40 l/(h m2) in operating conditions at 6 bar and these values are interesting for application purposes, the rejections of NTR-7410 nanofiltration membrane, obtained during operation of the membrane photoreactor in the degradation of humic acids, patent blue dye and 4-nitrophenol, were significantly lower than those obtained in the absence of photodegradation probably because of the small molecular size of by-products and intermediate species generated during the photodegradation process. This means that in order to select a suitable membrane, rejection should be determined during operation of the photoreactor.  相似文献   


5.
Membrane separation has become an important technology to deal with the global water crisis. The polymerbased membrane technology is currently in the forefront of water purification and desalination but is plagued with some bottlenecks. Laminated graphene oxide(GO) membranes exhibit excellent advantages in water purification and desalination due to the single atomic layer structure, hydrophilic property, rich oxygen-containing groups for modification, mechanical and chemical robust, anti-fouling properties, facile and large-scale production, etc. Thus the GO-based membrane technology is believed to offer huge opportunities for efficient and practical water treatment. This review systematically summarizes the current progress on the water flux and selectivity intensification, stability improvement, anti-fouling and anti-biofouling ability enhancement by structural control and modification. To improve the performance of the laminated GO membrane, interlayer spacing tunability and surface modification are mainly used to enhance its water flux and selectivity. It is found that the stability and biofouling also block the service life of the GO membrane. The crosslinking method is found to effectively solve the stability of GO membrane in aqueous environment. Introducing nanoparticles is a widely used method to improve the membrane biofouling ability. Overall, we believe that this review could provide benefit to researchers in the area of GO-based membrane technology for water treatment.  相似文献   

6.
A hydrothermal method for the synthesis of reduced graphene oxide/titanium dioxide filter (RGO/TiO2) and reduced graphene oxide/zinc oxide filter (RGO/ZnO) by using polypropylene (PP) porous filter is reported. Field emission scanning electron microscopy illustrated that the nanoparticles were uniformly distributed on the reduced graphene oxide nanosheets. Flexural tests showed that the physical properties of the modified filters have greater strength than the original filter. Thermogravimetric analysis revealed that the thermal property of the modified filters is the same as that of the original filter. Under a halogen lamp, the modified filter exhibited excellent photocatalytic degradation of methylene blue. The RGO/TiO2 filter maintained its ability to degrade MB efficiently, even after five cycles of photocatalysis.  相似文献   

7.
针对芬顿催化氧化工艺存在的问题进行了原因分析,在药品选择、药品投加方案、投加条件、刮泥机运行时间、pH值调节、混凝沉淀池增加挡板等方面进行改进。将芬顿催化氧化法应用到净化焦化废水中,出水指标达到国家一级排放标准。  相似文献   

8.
Different polydimethylsiloxane (PDMS) nanocomposite membranes were synthesized by incorporating various contents of nanosized silica particles to improve the PDMS pervaporation (PV) performance. A uniform dispersion of silica nanoparticles in the PDMS membranes was obtained. The nanocomposite membranes were characterized morphologically by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that surface roughness increases by incorporating silica, and this decreases absorption of penetrants on the membrane. Swelling studies showed that the presence of silica nanoparticles into the PDMS membranes decreases degree of swelling, which can be attributed to rigidification of the PDMS matrix. Additionally, the results revealed that helium permeability decreases through the nanocomposite membranes, due to the more polymer chains packing. Effects of silica on recovery of isopropanol (IPA) from water mixtures were also investigated. Based on the results, incorporating silica nanoparticles promotes significantly the PDMS membrane selectivity because the polymer chains are rigidified and also the polymer free volume decreases. However, permeation flux decreases as diffusion of the penetrants reduces in the presence of silica nanoparticles within the PDMS membranes. As PV performance depends on operating conditions, effects of feed composition, and temperature were also studied. Moreover, recoveries of IPA, ethanol, and methanol from water mixtures were compared using the PDMS‐silica nanocomposite membranes. The results demonstrated that polarity and solubility of alcohols affect permeation flux and selectivity resulting in the higher permeation flux and selectivity for IPA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
《Ceramics International》2017,43(7):5450-5456
The Ag-TiO2/r-GO nanocomposite was synthesized via a facile one-pot solvothermal method. X-ray diffraction (XRD), Transmission electron microscopy (TEM),High resolution transmission electron microscopy(HRTEM), UV–vis diffuse reflectance spectroscopy (DRS), Fourier transformed infrared spectroscopy (FT-IR), Photoluminescence (PL) and N2 adsorption-desorption were used for the characterization of prepared samples. The adsorbent and photocatalytic performance of prepared samples were evaluated by remove of Rh B dyes and reduction of CO2. Both the adsorbent and photocatalytic ability of all the Ag-TiO2/r-GO samples were much higher than pure hollow TiO2. The excellent adsorbent capacity can be attributed to the large BET surface area and the enhanced photocatalytic activity can be assigned to the predominant properties of graphene and the localized surface plasmon(LSPR) effect of Ag nanoparticles.  相似文献   

10.
In this study, nanocomposite membranes based on cellulose acetate (CA) and nanodiamond (ND) were prepared by applying phase inversion methods. In order to achieve efficient dispersion and more hydrophilic NDs, they were functionalized via heat treatment (ND‐COOH). The prepared nanocomposite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle, porosity measurement, tensile strength, and abrasion resistance techniques. Furthermore, the governing fouling mechanisms were determined by using classic models as well as combined fouling models. Moreover, the effect of precoagulation with polyaluminum chloride (PAC) on the humic acid (HA) filtration was investigated. The obtained results showed that in the presence of ND‐COOH, the abrasion resistance of nanocomposite CA membrane was three times higher than that of pristine CA membrane. Besides, the nanocomposite membranes with 0.5 wt % of raw and functionalized ND exhibited excellent hydrophilicity and PWF. The analysis of fouling mechanism based on Hermia's model revealed that the cake formation is prevailing mechanism for CA and CA/ND (0.5 wt %) membranes while for CA/ND‐COOH (0.5 wt %) membrane, experimental results are fitted by combined cake filtration‐complete blocking (CFCB) model. It confirms that pretreatment with PAC can significantly mitigate fouling and improve HA removal. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44873.  相似文献   

11.
廖强  田鑫  朱恂 《化工学报》2006,57(7):1643-1648
对不同温度下,陶瓷球填料生物膜滴滤塔净化低浓度有机废气的降解性能以及填料床内温度分布进行了实验研究,实验结果表明:填料床内微生物生长环境温度对微生物酶活性影响很大,从而造成温度对滴滤塔净化性能的显著影响.微生物酶活性最高时的温度为30℃,最高滴滤塔净化性能所对应的温度在30~40℃.在滴滤塔顺流操作条件下,滴滤床内温度沿气液流动方向升高;在进口碳源浓度一定时,滴滤床内沿气液流动方向的温升随着液体流量的减小和气体流量的增大而升高;废气进口浓度及系统操作方式对滴滤床温度分布也有显著影响.  相似文献   

12.
Using waste LCD glass as a base material helped developed the manufacturing process of the spherical foamed body and its varied functionality. Also, the manufactured spherical foamed body showed great performance as a water treatment media. By mixing 90 wt% of waste LCD glass, 100 parts by weight of glass mixture that has 10 wt% kaolinite as a shaping agent, 1.0 part by weight of carbon foaming agent, and mixture of each 1.5 parts by weight of Na2CO3, CaCO3 and Na2SO4 as foaming agents and the MgO as a parting agent for 10 min of foaming calcination in the rotary kiln at 970–1000 °C, the spherical foamed body can be manufactured effectively. The manufactured spherical foamed body performed as a great water treatment media by showing 70.5% of SS removal efficiency, 56.1% of BOD removal efficiency, 57.5% of COD removal efficiency, 28.6% of denitrification and 49.8% of phosphorous removal.  相似文献   

13.
TiO2-graphene nanocomposite was prepared by hydrolysis of titanium isopropoxide in colloidal suspension of graphene oxide and in situ hydrothermal treatment. It provides an efficient and facile approach to yield nanocomposite with TiO2 nanoparticles uniformly embedded on graphene substrate. The electrochemical behavior of adenine and guanine at the TiO2-graphene nanocomposite modified glassy carbon electrode was investigated. The results show that the incorporation of TiO2 nanoparticles with graphene significantly improved the electrocatalytic activity and voltammetric response towards these species comparing with that at the graphene film. The TiO2-graphene based electrochemical sensor exhibits wide linear range of 0.5–200 μM with detection limit of 0.10 and 0.15 μM for adenine and guanine detection, respectively. The excellent performance of this electrochemical sensor can be attributed to the high adsorptivity and conductivity of TiO2-graphene nanocomposite, which provides an efficient microenvironment for electrochemical reaction of these purine bases.  相似文献   

14.
A series of novel xerogels based on sodium acrylate (NaA), montmorillonite (MMT), and N,N′‐methylene‐bisacrylamide (NMBA) were prepared by inverse suspension polymerization and water solution polymerization. The influences of pure MMT, intercalated MMT, the method of polymerization, and the content of the MMT in the copolymeric gels on the water absorbency and the initial absorption rate in deionized water and various salt solutions were investigated. Results showed that the water absorbency was increased by adding a small amount of the pure MMT into the copolymeric gels, but decreased by adding intercalated MMT into the gels. In addition, the water absorbency of the gels prepared by water solution polymerization was lower than that prepared by inverse suspension polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3422–3429, 2004  相似文献   

15.
采用浸渍法制备了不同载体和金属组分的系列负载型催化剂,考察对溴甲烷制二甲醚的催化活性,并采用XRD、TPR和BET进行表征。结果表明,铜基催化剂催化性能较好,且以Al2O3-1#为载体制备的催化剂催化性能更优。Cu O负载量较低时,具有较高的分散度;高温焙烧使催化剂的活性中心由分散态Cu O转变为晶相Cu O,导致Cu O利用率下降;添加助剂K可显著提高Cu O利用率。优选的催化剂制备条件为:以Al2O3-1#为载体,活性组分Cu O负载质量分数为5%,助剂K负载质量分数为0.8%,焙烧温度为350℃,此条件下制备的催化剂,CH3Br转化率和二甲醚选择性均为100%,催化剂的Cu O利用率达到88.04%;再生10次后,催化剂性能保持稳定,没有明显下降。  相似文献   

16.
The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.  相似文献   

17.
Hydrotreating processes for catalytic abatement of water pollutants   总被引:2,自引:0,他引:2  
Opportunities and problems in application of catalytic hydrotreating processes, which are presented a viable approach in the abatement of water pollutants, are discussed. Analysis of the hydrodechlorination (HDC) and hydrodenitrification (HDN) using Pd-based catalysts supported on various materials like granulated activated carbon (GAC), fibrous activated carbon cloths (ACCs) or glass fiber cloths (GFCs) studied recently in our laboratory suggests the following perspectives:

Exhaustive regeneration of Pd/GAC saturated with p-chlorophenol can be achieved in a two-step approach, incorporating gas-phase HDC by hydrogen followed by oxidation by air.

Pd/ACC catalysts are good candidates for the liquid-phase HDC showing activity higher than that of Pd/GAC or Pd/GFC; the high adsorption capacity of Pd/ACC lead suggesting its use in a technology with periodic adsorption and HDC, in similarity to adsorption with regeneration of GAC.

Pd/GFC and Pd–Cu/GFC are promising catalyst for removal of nitrites and nitrates, showing activity and selectivity that compares favorably with those of powdered catalysts.

Author Keywords: Water treatment; Adsorption; Heterogeneous catalysis; Hydrodechlorination; Activated carbon; Granular; Fibrous cloth; Hydrodenitrification; Glass fiber cloth  相似文献   


18.
《Ceramics International》2022,48(7):9434-9441
In this study, we investigated the effect of Ag addition on the photocatalytic reactivity of TiO2 nanoparticles (NPs). Controlled amounts of Ag were incorporated in TiO2 NPs using aerosol spray pyrolysis and subsequent calcination. Ag/TiO2 composite NPs containing different amounts of Ag (e.g., 0, 0.5, 1, 2, and 5 wt%) were successfully fabricated. The photodegradation performances of the as-prepared Ag/TiO2 composite NPs were tested using methylene blue (MB) solution under UV and visible light irradiation. Upon increasing the Ag content to 1 wt%, the resulting Ag/TiO2 composite NPs exhibited increased photocatalytic reactivity due to lowered bandgap energy, which promoted both charge generation and separation. However, when the Ag content exceeded 1 wt%, the photocatalytic reactivity of the resulting Ag/TiO2 composite NPs was considerably deteriorated due to the masking effect of the excess Ag on the reactive sites of TiO2. Hence, the incorporation of an optimized amount of Ag in the TiO2 matrix promotes the photocatalytic reactivity of Ag/TiO2 composite NPs by controlling their bandgap energy and charge generation and separation processes. These results could lead to the development of photodegradation active substances for water treatment in organic solutions.  相似文献   

19.
《Ceramics International》2020,46(5):6284-6292
The photocatalytic performance of copper ferrite graphene oxide catalyst, CFXGO (CF: Copper ferrite, CuFe2O4; GO: Graphene oxide; X: GO weight percentage) was tested for photo Fenton-like oxidation of Reactive Black 5 by using UV light irradiation. The effect of the graphene oxide content in the catalyst structure on dye removal efficiency was tested by comparing the performances of the catalysts with different weight ratios of graphene oxide varying between 5 and 90%. The catalysts were characterized by Scanning Electron Microscopy, X-Ray Diffraction, Brunauer–Emmett–Teller method, and, Vibrating Sample Magnetometer. The influences of catalyst loading, initial pH, and, the H2O2 concentration were investigated in the presence of CF90GO catalyst, which has 90% graphene oxide content. According to the parametric studies, 98.2% decolorization and 82.8% TOC removal efficiencies were achieved in 2 h for the treatment of 50 mg/L RB5 solutions when the catalyst loading, the initial pH, and, the initial hydrogen peroxide concentration were 0.275 g/L, 7, and, 5.5 mM, respectively.  相似文献   

20.
介绍硫铁矿制酸污水循环利用的改造情况以及对改造中出现问题的整改措施。改造利用了公司邻近合成氨厂的废氨水对污水进行中和处理,既解决了公司污水处理问题,又解决了邻近合成氨厂外排废氨水的问题。技改后,水循环利用率达95%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号