首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(18):29607-29613
The crystal structure of Ba2-xMgB2O6:xEu3+ phosphors, synthesized using a solid-state reaction, have been confirmed by X-ray diffraction analysis. This study focuses on the site occupancy preference of Eu3+ ions within the matrix, which was determined using bond energy theory, fluorescent spectra, and a consideration of energy transport and decay curves. The impact of Eu3+ ion concentration on luminescence has been assessed, and an optimal concentration (x = 0.22) identified. The critical distance, Rc was 9.6 Å, with a calculated θ value of 19.67, indicating that quadrupole-quadrupole interaction plays a critical role in the quenching Ba2-xMgB2O6:xEu3+ phosphors. The Ba2-xMgB2O6:xEu3+ phosphors exhibited a color purity of 99.26%, and a quantum efficiency of 49.68%. The activation energy Ea was determined to equal 0.2987 eV. The results have established Ba1.78MgB2O6:0.22Eu3+ as a red fluorescent powder with high quantum efficiency and a millisecond fluorescence lifetime.  相似文献   

2.
《Ceramics International》2015,41(4):5554-5560
A series of color-tunable NaCaBO3: Ce3+, Tb3+ phosphors have been synthesized on the basis of efficient Ce3+→Tb3+ energy transfer. The photoluminescence emission and excitation spectra, the lifetime, and the effect of Tb3+ concentration are investigated in detail. The enhanced photoluminescence of Tb3+ with sharp emission lines could be obtained by the broad excitation band from the allowed 4f–5d absorption of Ce3+ ions. The intensity ratio of blue emission from Ce3+ and green emission from Tb3+ can be tuned by adjusting their concentrations. The energy transfer from Ce3+ to Tb3+ in NaCaBO3 was found to be an electric dipole–quadrupole interaction.  相似文献   

3.

Abstract

Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.

PACS

42.70.-a, 78.55.Hx, 78.60.-b  相似文献   

4.
Pr3+, Gd3+ co-doped SrF2 transparent ceramic, as the potential material for visible luminescent applications, was prepared by hot-pressing of precursor nanopowders. The microstructure, phase compositions, and in-line transmittance, as well as the photoluminescence properties were investigated systematically. Highly optical quality Pr,Gd:SrF2 transparent ceramic with nearly pore-free microstructure was obtained at 800°C for 1.5 hours. The average in-line transmittance of the x at.% Pr, 6 at.% Gd:SrF2 (x = 0.2, 0.5, 1.0, 2.0) transparent ceramics reached to 87.3 % in the infrared region. The photoluminescence spectra presented intense visible light emissions under the excitation of 444 nm, the main intrinsic emission bands located at 483 and 605 nm, which were attributed to the transitions of Pr3+: 3P0 → 3H4 and 1D2 → 3H4, respectively. With the co-doping of Gd3+ ions, the emission intensity of the Pr:SrF2 transparent ceramic was greatly enhanced. All the emission bands of x at.% Pr, 6 at.% Gd:SrF2 transparent ceramics exhibited the highest luminescence intensity with the 1.0 at.% Pr3+ doping concentrations, whereas the lifetimes decreased dramatically with the Pr3+ doping contents increasing from 0.2 to 2.0 at.% due to its intense concentration quenching effect. The 1 at.% Pr, 6 at.% Gd:SrF2 transparent ceramic is a promising material for visible luminescent device applications.  相似文献   

5.
Eu2O3 doped transparent glass-ceramics containing NaY(MoO4)2 crystalline phase were prepared via melting-crystallization. The optimum heat treatment condition (660℃/3h) was determined by DSC, XRD, SEM and transmittance curves. The transmittance of glass-ceramic can reach 80 % in the visible region. The emission spectra of Eu2O3 doped glass-ceramics consist of Eu3+ ions characteristic emission peaks at 591nm (5D07F1) and 614nm (5D07F2). The optimal doping concentration of Eu2O3 in the glass-ceramics is 0.9 mol%, and fluorescence lifetime is 1.37042ms. The change of the ratio of red emission intensity to orange emission intensity leads to the shift of chromaticity coordinates from orange to red region, and the chromaticity coordinate (0.6337, 0.3635) of 0.9 mol% Eu2O3 doped glass-ceramic is closest to the standard red light coordinate. The results show that this kind of glass-ceramic is expected to be good red emission material.  相似文献   

6.
《Ceramics International》2023,49(6):8976-8985
In this work, a series of Dy3+ and Dy3+/Tm3+ ion activated Ca3NbGa3Si2O14 glass-ceramics were prepared by traditional melt crystallization method, and report on the structural, optical, and energy transfer (ET)-based photoluminescence (PL) properties of glass-ceramics co-doped Dy3+/Tm3+. The preparation of glass-ceramics was studied by DTA, XRD, SEM, and UV–vis photometer technology, phase composition, transmittance, optimum heat treatment conditions, and luminescence properties. The best heat treatment procedure for obtaining transparent and well-formed glass-ceramics is crystallization at 820 °C for 5 h. The spectra excited by Tm3+ and Dy3+ have intersections at 352 nm and 365 nm, which means that CNGS: Dy3+/Tm3+ can be effectively excited by 352 nm and 365 nm ultraviolet light. Under the excitation of 352 nm ultraviolet light, four main emission peaks corresponding to 1D23F4, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 were found at 456 nm, 484 nm, 577 nm, and 663 nm, respectively. When the optimal concentration (4 at.%) of Dy3+ is Co-doped with a different amount of Tm3+, the luminous color can be adjusted by adjusting the doping amount of Tm3+ and changing the excitation wavelength. There is an overlapping region between the emission spectrum of Tm3+ doped glass and the excitation spectrum of Dy3+ doped glass, which indicates that there is energy transfer between Tm3+ and Dy3+. In addition, CNGS: Dy3+/Tm3+ CIE coordinates show that the color coordinates (0.3324, 0.3352) when y = 0.02 under 365 nm excitation are closest to the standard white light (0.333, 0.333), indicating that this glass has potential applications in WLED devices.  相似文献   

7.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

8.
《Ceramics International》2022,48(11):15832-15838
Development of novel materials with advanced properties is one of the main research directions of chemistry. New substances are not only crucial for many current technological applications but also should satisfy the needs of tomorrow. Industry often requires reliable, economically effective methods that can provide high quality reproducible results. Here we propose an inexpensive synthesis method that is suitable for synthesis of many types of particles. In this work we focused on Gd2O3:Tm3+, Er3+, Nd3+ particles with luminescence and magnetic properties. Based on the analysis of morphology, structural and optical properties of particles prepared by the standard Pechini methods and its variations, we found that the method with K2CO3 as additive yields particles with smaller sizes (down to tens of nm), higher crystallinity, and up to 1.7 times increased luminescence intensity. We also demonstrate that the unique combination of the particles’ characteristics, for example, the intensity ratio of the luminescent bands corresponding to different REI and the mass susceptibility, strongly depends on the composition, synthesis method, and structure. The variety of the combination of the properties makes these particles a promising candidate for safety markers applications.  相似文献   

9.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

10.
《Ceramics International》2015,41(7):8988-8995
A series of white-light-emitting phosphors of single-phase Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ were synthesized by conventional solid-state reaction. The crystal structure of the host was characterized by X-ray diffraction and investigated by Rietveld refinement. Photoluminescence properties were studied in detail. The energy transfer from Ce3+ to Tb3+ in Ba2Mg(BO3)2 host was investigated and demonstrated to be a resonant type via a quadrupole–quadrupole mechanism. White light with wavelength tunable was realized by coupling the emission bands peaking at 417, 543 and 626 nm attributed to Ce3+, Tb3+ and Eu2+, respectively. By properly tuning the relative composition of Ce3+(Na+)/Tb3+/Eu2+, optimized Commission Internationale de l׳Eclairage (CIE) chromaticity coordinates (0.363, 0.295), high color rendering index (CRI) 90 and low correlated color temperature (CCT) 3793 K were obtained from the phosphor of Ba1.90Ce0.04Na0.04Eu0.02Mg0.94Tb0.06(BO3)2 upon the excitation of 296 nm UV radiation. These results indicate that Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor has a potential application as an UV radiation down-converting phosphor in white-light-emitting diodes.  相似文献   

11.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

12.
《Ceramics International》2022,48(22):33323-33331
The structural and magnetic properties of sol-gel synthesized Gd doped (x = 0.00 to 0.15) CoFe2O4 nanoparticles (NPs) have been studied. The x-ray diffraction (XRD) and FTIR spectroscopy along with Raman spectra confirmed the formation of face centered cubic inverse spinel structure. TEM images showed the NPs are well-dispersed with average particle size 30 nm. Room temperature magnetic measurement showed the value of coercivity fluctuates from 353 Oe to 1060 Oe for different % of Gd content. The maximum coercivity, saturation magnetization, magnetic moment, magnetic anisotropy, remnant magnetization found for 0.03% Gd content are 1060.19 Oe, 77.53 emu/gm, 3.29 μ, 4.11 × 104 erg/cm3, 32.38 emu/gm, respectively. The large value of coercivity indicated that the interparticle interactions and crystalline anisotropy are high. Thus CoFe2-xGdxO4 magnetic NPs might be a potential candidate for data processing, automotive and telecommunications.  相似文献   

13.
《Ceramics International》2022,48(11):15755-15761
In this work we detail the preparation of new luminescent Li+ and K+ doped Na2Zn3Si2O8: Er3+ up-conversion phosphors using the high-temperature solid-phase method. We investigate the phosphors phase structure, elemental distribution, up-conversion luminescence characteristics and temperature sensing properties. Our fabricated samples were found to be homogeneous and when excited using 980 nm light, they emitted wavelengths in the green and red visible wavelength bands, which correspond to two major emission bands of Er3+. Doping with Li+ and K+ increased the luminescence intensity of the Na2Zn3Si2O8: Er3+ phosphor at 661 nm by 36 and 21 times respectively. The highest relative temperature sensitivity (Sa) of the fabricated phosphor reached a value of 19.69% K?1 and the highest absolute temperature sensitivity (Sr) reached 1.20% K?1. These values are superior to other materials which utilize up-conversion by Er3+ ions as a tool for temperature sensing. We anticipate that these new phosphors will find significant application as components in optical temperature measurement systems.  相似文献   

14.
《Ceramics International》2016,42(5):6428-6435
Gd2O3:Eu3+ nanoparticles with doping concentration of 5% were prepared by urea-assisted combustion synthesis (UCS), carbohydrazide combustion synthesis (CCS), sucrose-aided combustion synthesis (SCS), glycine combustion synthesis (GCS) and by sol–gel (SG) synthesis. The nanopowders were postannealed at 1000 °C for 3 h to obtain nanocrystalline phosphor, which was confirmed by X-ray diffraction (XRD). Surface chemical groups were detected by Fourier transform infrared spectroscopy (FTIR). Particle size distribution and morphology images of the synthesized nanoparticles were obtained using transmission electron microscopy (TEM). Average particle size decreased exponentially with an increase in the amount of gases evolved during the synthesis method. Nanoparticles obtained by UCS showed the highest photoluminescence (PL) intensity, and absolute quantum yield (QY). A comparison of the factors affecting optical properties showed that PL intensity, QY and fluorescence lifetime were dependent on crystallite size.  相似文献   

15.
A laser melting method has been developed for the synthesis of highly luminescent, long-lasting SrAl2O4:Eu2+, Dy3+ phosphors. The high temperature achieved in high-power density CO2 laser irradiation of mixtures of SrCO3, Al2O3, Eu2O3, and Dy2O3 enabled the one-step, fast synthesis of these phosphors in air at atmospheric pressure. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy characterization studies reveal that the produced materials consist of monoclinic SrAl2O4 grains extensively surrounded by rare-earth ion-enriched grain boundaries. The photoluminescence properties of laser-produced SrAl2O4:Eu2+, Dy3+ materials are discussed. The results reported here suggest that this laser melting method is a promising route for the synthesis of ceramic phosphors. It is presented as an alternative to the conventional sol–gel and solid-state methods, which require the use of high-temperature furnaces, flux additives, and reducing atmospheres.  相似文献   

16.
《Ceramics International》2020,46(11):18903-18910
Generally, the emission intensity and afterglow of the near infrared phosphors can be improved by co-doping the sensitizer. In this work, Bi3+ ions as sensitizer are introduced into the near infrared phosphor Mg3Y2Ge3O12:Cr3+, and the luminescence properties are investigated. According to the principle of radius adaptation, Bi3+ ions would occupy eight coordinates in the host instead of Y3+ and Mg2+. Through structural refinement, theoretical calculation and experimental phenomena, there are two kinds of luminescent sources for Bi3+ ions, which come from 3P11S0 (441 nm) and MMCT (330 nm), respectively. In addition, the substitution of Bi3+ for Mg2+ will result in inequivalent substitution forming defects (BiMg·), and the trap depth is 0.55 eV. For Bi3+ and Cr3+ co-doped Mg3Y2Ge3O12, there are two factors can that can affect the luminescent properties of Cr, which are energy transfer and defects. The samples are obtained with three times the original emission intensity with the introduction of defects. At the same time, Bi3+ ions capture electrons to form new electron traps Bi2+ (Bi3+ + e-) and the trap depth is 0.81 eV. Therefore, under the action of two traps BiMg· and Bi2+ (Bi3+ + e-), the afterglow characteristics of the samples are improved and the time can reach 1.5 h.  相似文献   

17.
掺钆的铝酸锶铕镝磷光体的发光特性及晶相分析   总被引:3,自引:0,他引:3  
采用高温固相法在弱还原气氛下制备了掺入Gd3+的SrAl2O4:Eu2+,Dy3+磷光体.研究了Gd3+对SrAl2O4:Eu2+,Dy3+磷光体的发光性能的影响.结果发现:引入Gd3+以后,对SrAl2O4基质的晶体结构基本上没有影响,也并未改变磷光体的发光光谱,却使磷光体的初始亮度显著提高,并使余辉时间延长.其余辉强度随时间的变化由最初的快衰减过程和随后的慢衰减过程组成,符合t-1.1的双曲线规律.并初步探讨了Gd3+的作用机制.  相似文献   

18.
《Ceramics International》2022,48(20):30005-30011
Self-calibrated temperature measurements combined with luminescence intensity ratio (LIR) and luminescence lifetime are more accurate. A dual-mode self-calibration optical thermometer was designed based on CaNb2O6: Tb3+/Pr3+ phosphor. The obtained sample has excellent sensitivity, with the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) being 0.69 K-1 at 612 K and 2.50% K-1 at 532 K for LIR mode, and 0.0059 K-1 at 475 K and 2.62% K-1 at 535 K for luminescence lifetime mode, respectively. These results indicate that CaNb2O6: Tb3+/Pr3+ phosphor has valuable potential application for self-calibration optical temperature measurement.  相似文献   

19.
Transparent Eu3+-doped (0.05–0.15 at. %) alumina ceramics with fine-grained microstructure were prepared and studied in terms of optical properties and photoluminescence (PL). The light transmission through ceramics up to dopant concentrations 0.125 at. % is dominated by birefringence scattering at grain boundaries. As confirmed by HRTEM/EDS element mapping, high photoluminescence intensity was achieved as the result of the dopant segregation at grain boundaries. The PL emission spectra of Al2O3:Eu3+ ceramics exhibited red light emissions with the highest intensity (394 nm excitation) for material containing 0.125 at. % of Eu3+. The luminescence decay was single-exponential with a lifetime ~1.5 ms. The post-sintering reduction of Eu3+→Eu2+ under an H2 atmosphere (at 1300 °C) was difficult. Two simultaneously coexisting Eu2+ emitting PL centers were identified, one emitting blue light with average decay constant of 150 ns, and the other green light (more intense) with average decay constant of 1.3 μs.  相似文献   

20.
掺铽的铝酸锶铕镝磷光体的发光特性及晶相分析   总被引:2,自引:0,他引:2  
采用高温固相法在弱还原气氛下制备了掺入Tb3 的SrAl2O4:Eu2 ,Dy3 磷光体.研究了Tb3 对SrAl2O4:Eu2 ,Dy3 磷光体的发光性能的影响.结果发现,引入Tb3 以后,对基质SrAl2O4的晶体结构基本上没有影响,也未改变磷光体的发光光谱,却使磷光体的初始亮度显著提高,并使余辉时间延长.其余辉强度随时间的变化由最初的快衰减过程和随后的慢衰减过程组成,符合t-1.1的双曲线规律.并初步探讨了Tb3 的作用机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号