首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2023,49(13):21471-21478
In this study, novel (Ti,Hf)(C,N) ceramics with varying hafnium contents were fabricated via carbothermal reduction–nitridation and subsequent spark plasma sintering. The influence of Hf addition on the mechanical properties, wear properties, and corrosion resistance of the (Ti,Hf)(C,N) ceramics was systematically studied. The introduction of Hf promoted the sintering densification of the ceramics in the sintering process. The prepared (Ti,Hf)(C,N) ceramics exhibited excellent mechanical and wear properties owing to refinement and solution-strengthening mechanisms. The (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic demonstrated higher Vickers hardness and fracture toughness, measuring 1997 HV5 and 4.28 MPa m1/2, respectively, compared to the pure Ti(C0.5,N0.5) ceramic which exhibited values of 1635 HV5 and 3.94 MPa MPa m1/2. The wear scar depth of the (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic sample was 57.36% to that of the Ti(C0.5,N0.5) ceramic. Additionally, the addition of Hf improved the corrosion resistance of (Ti,Hf)(C,N) ceramics in a 0.5 M NaOH solution. The potential applications of (Ti,Hf)(C,N) ceramics include machining tools and wear-resistant parts.  相似文献   

2.
《Ceramics International》2020,46(2):1824-1829
Four sets of WC-10Co cemented carbides with different carbon content were prepared by adding the ultrafine WC powders as seeds during the in-situ sintering reaction among W, Co and C. The effect of carbon content on microstructure and mechanical properties were studied. The results show that the microstructure, phase composition and mechanical properties of WC-10Co cemented carbides with plate-like WC grains were seriously affected by the carbon content. The fast growth of WC grains with high carbon content could proceed the prismatic plane preferentially along the <1 0 1() 0> directions, resulting in the high content of plate-like WC grains. The density increased with the increment of the carbon content and reached the maximum value, then, followed by a decline. The hardness and the transverse rupture strength of the alloy in the two-phase zone with carbon content of 5.91 wt% reached the maximum value. The existence of plate-like WC grains could impede the propagation of the cracks due to the decrease of the weakest carbide regions and the increase of the basal facets of broken WC crystals. In this case, more fracture energy was required to crack propagation and further improved the transverse rupture strength. Additionally, the plate-like WC was benefit to reduce the wear volume and bring about a better wear resistance. Thus, the alloy with the appropriate proportion of carbon content can obtain higher mechanical properties and wear resistance.  相似文献   

3.
《Ceramics International》2016,42(16):18100-18107
Inhomogeneous WC-(fine WC-Co) cemented carbides with improved hardness and toughness were successfully prepared through the addition of fine WC using planetary ball milling combined with sinter isostatic hot pressing (SHIP) technology. The inhomogeneous microstructure of the alloys consisted of coarsened WC grains and WC-Co consisting of fine WC dispersoids and Co binder phase. The increase of temperature and the addition of fine WC enhanced the sintering process. The morphologies of the coarsened WC and of the fine WC consisted of triangular and near-hexangular prisms, respectively. Due to crack path deflection and crack bridging, the prism-like coarsened WC crystals efficiently hindered cracks propagation. Intergranular fracture became predominant when adding fine WC. However, the excessively coarsened WC and some pores in alloys with 20 wt% fine WC could decrease the mechanical properties. The inhomogeneous WC-(fine WC-Co) cemented carbides with 10 wt% fine WC, sintered at 1430 °C for 40 min, could provide a combination of superior hardness and toughness.  相似文献   

4.
《Ceramics International》2021,47(18):26050-26062
In this study, the microstructure, mechanical properties, and cutting performance of WC-8Co cemented carbide with different Ru additions were studied in detail. The results show that Ru can inhibit the abnormal growth of WC grains and the mean grain size of WC grains decreases. Ru can result in the lattice distortion of Co phases and promote the phase transition of Co from face-centered cubic (FCC) to hexagonal closepacked (HCP) as Ru can reduce the stacking fault energy of Co phases. The proportion of HCP Co phases increased from 14.4 to 39.6% with increasing Ru content. Meanwhile, among the five groups of cemented carbides with different Ru additions, cemented carbides with 1.5 wt% Ru exhibit the highest hardness of 1382 HV and transverse rupture strength (TRS) of 3790 MPa. The enhanced hardness and TRS were due to solid solution strengthening and phase transition of Co, respectively. The fracture toughness of cemented carbide was enhanced from 16 MPa m−1/2 with 0 wt% Ru to 19 MPa m−1/2 with 0.5 wt% Ru. Additionally, during the dry cutting of Ti–6Al–4V, the diffusion of Ti and Al elements is hindered. Therefore, the wear resistance of the tools is improved. The cutting lifetime of the cemented carbide tools with 0.5 wt% Ru increased three-fold compared to those without Ru addition.  相似文献   

5.
运用固体与分子经验电子理论(EET理论)计算了(Ti,Mo,W,Ta,V,Nb)(C,N)多元陶瓷相的价电子结构.结果表明,价电子结构参数(nA)随碳化物添加量的增加而增加.不同碳化物对价电子结构参数的影响不同,其中VC的影响最为显著.价电子结构参数(nA)可以用来评价金属陶瓷的力学性能,提出了相关的判据关系式.  相似文献   

6.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

7.
In order to develop a new high-performance binder phase, four different alloys Co-Ni-Fe, Co-Ni-Cr, Co-Ni-Nb, and AlCoCrNiNb0.5 were used as a binder in cemented carbides. The room-temperature mechanical properties and high-temperature flexural strength of cemented carbides were studied. The results show that the optimal mechanical properties for the WC-8(Co-Ni-Fe, Co-Ni-Cr, Co-Ni-Nb, and AlCoCrNiNb0.5) can be obtained at the sintering temperatures of 1200°C, 1350°C, 1350°C, and 1300°C, respectively. Compared with cemented carbides with Co as binder phase, the hardness of the four kinds of alloys is increased, the WC grain size becomes finer, but the fracture toughness is slightly decreased. When the temperature is under 600°C, there is no visible oxidation of the four kinds of cemented carbides, and their bending strengths are basically not reduced. When the temperature increased from 600°C to 900°C, the WC-8(Co-Ni-Nb) and WC-8(Co-Ni-Fe) samples present the better high-temperature bending resistance compared with the WC-8(Co-Ni-Cr) and WC-8AlCoCrNiNb0.5 samples, with respective decrease in bending strength of 11.7% and 7.3%.  相似文献   

8.
In this study, diffusion bonding of WC-Co cemented carbides to a tool steel was realized utilizing Ni foils as the interlayer in a vacuum. The effects of bonding temperature and Ni interlayer thickness on interfacial microstructure and mechanical properties of the joint were studied. The research results revealed that brittle phases and cracks were suppressed due to the Ni interlayer. Moreover, the coherent relationship of [1 2 0]WC//[1 0 1]Ni and (0 0 1)WC//(0 2 0)Ni was observed at the interface of WC grains and Ni interlayer, and it greatly contributed to the bonding strength of WC-Co/steel joint. As the bonding temperature increased, the atoms diffused sufficiently, and the interfacial defect dimensions decreased. Then, the Ni interlayer was transferred to solid solutions, resulting in the high shear strength of the bonded joint. The optimum shear strength (444.7 MPa) was achieved when the bonding was carried out at 1050 °C for 1 h with a 4-μm-thick Ni interlayer. The cracks were propagated in the interlayer and the WC-Co substrate near the bonding seam.  相似文献   

9.
In this study, Ti(C,N)-WC-NbC-ZrC-Co-Ni cermets were prepared by sintering-hip at 1450?°C. The effect of ZrC addition on the microstructure, mechanical properties, oxidation resistance and wear resistance of Ti(C,N)-WC-NbC-Co-Ni cermets were explored in detail. The results show that ZrC addition plays the role of inhibitor in the dissolution–reprecipitation process, which can increase the wear-resistant carbide phases and inhibit the precipitation of brittle (Ti,W,Nb)(C,N) rim phase. Therefore, the core-rim structures are refined and the Nb content in binder increases, which enhance mechanical properties and oxidation resistance of cermets. With the increasing ZrC content, the oxidation resistance of cermets can be improved constantly, while the transverse rupture strength, fracture toughness and wear resistance of these cermets increase first and then decrease. The cermet with 1?wt% ZrC exhibits the transverse rupture strength of 2549?MPa and highest fracture toughness of 13.0?MPa?m1/2. The oxidation weight gain of cermets containing 5?wt% ZrC after holding 100?h at 750?°C in air is 2.8?×?10?6 g?mm?2, which is only 22% of that in the cermets without ZrC addition.  相似文献   

10.
Two high-entropy carbides, including stoichiometric (Zr,Ti,Nb,Ta,Hf)C and nonstoichiometric (Zr,Ti,Nb,Ta,Hf)C0.8, were prepared from monocarbides and ZrH2. Their sinterability, microstructures, mechanical properties, thermophysical properties, and oxidation behaviors were systematically compared. With the introduction of carbon vacancy, the sintering temperature was lowered up to 300°C, Vickers hardness was almost unaffected, whereas the strength decreased significantly generally due to the decrease of covalent bonds. The thermal conductivity shows a 50% decrease for nonstoichiometry high-entropy carbide, which is a major consequence of the lower electrical conductivity. The oxidation resistance in high temperature water vapor was not sensitive to carbon stoichiometry.  相似文献   

11.
A series of WC-based cemented carbides with Nb/TiC/TaC/VC and Co was prepared through spark plasma sintering (SPS) at a low sintering temperature of 1300°C, and their microstructures and mechanical properties were investigated. The nonstoichiometric multicomponent carbide Nb/TiC/TaC/VC with a rock-salt structure ( F m 3 ¯ m $Fm\bar{3}m$ ) has a high atomic solution capacity. In the sintering process, partial WC and Co may dissolve in Nb/TiC/TaC/VC. With a high concentration of carbon vacancies, Nb/TiC/TaC/VC plays a beneficial role as a mass transfer intermediary. Good mass transfer facilitates the formation of a more accommodating and stable bonding between WC, Nb/TiC/TaC/VC, and Co, thereby preserving the hardness of the sintered bulks and preventing the initiation and propagation of cracks. When 6 wt.% Nb/TiC/TaC/VC and 4 wt.% Co are added to WC, the sintered bulk with fine grains exhibits superior hardness (23.27 ± .63 GPa) and toughness (10.45 ± .56 MPa·m1/2).  相似文献   

12.
A novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic was successfully prepared by pressureless sintering at 2200 °C. With increasing content of resin-derived-carbon, the density, and mechanical and thermal properties increased up to a maximum content of 2~4 wt% resin addition, after which further addition was detrimental. All specimens showed high strength (≥347±36 MPa), with the highest value achieving 450±64 MPa, and fracture toughness significantly higher (>20 %) than those of the corresponding monocarbides and Ta0.5Hf0.5C, (Ta1/3Zr1/3Nb1/3)C. The thermal conductivity was approximately equivalent to the lowest value of the corresponding mono-carbides, which was assumed to be due to the lattice distortion effect.  相似文献   

13.
Two series of Ti (C, N)-based cermets, one with TiC addition and the other with TiN addition, were fabricated by conventional powder metallurgy technique. The initial powder particle size of the main hard phase components (Ti (C, N), TiC and TiN) was nano/submicron-sized, in order to achieve an ultra-fine grade final microstructure. The TiC and TiN addition can improve the mechanical properties of Ti (C, N)-based cermets to some degree. Ultra-fine grade Ti (C, N)-based cermets present a typical core/rim (black core and grayish rim) as well as a new kind of bright core and grayish rim structure. The average metallic constituent of this bright core is determined to be 62 at% Ti, 25 at% Mo, and 13 at% W by SEM–EDX. The bright core structure is believed to be formed during the solid state sintering stage, as extremely small Ti (C, N)/TiC/TiN particles are completely consumed by surrounding large WC and Mo2C particles. Low carbon activity in the binder phase will result in the formation (Ni2Mo2W)Cx intermetallic phase, and the presence of this phase plays a very important role in determining the mechanical properties of TiN addition cermets.  相似文献   

14.
《Ceramics International》2016,42(11):12701-12708
The influence of single and repetitive sudden changes of temperature on the mechanical integrity of cemented carbides was investigated as a function of their microstructure. Thermal shock resistance was assessed by testing the residual flexural strength of hardmetal beams after being subjected to thermal shock by water quenching. Results indicate that hard cemented carbides tend to exhibit a superior resistance to the nucleation of thermal shock damage but a lower resistance to the propagation of this damage mechanism than tough grades, and vice versa. These trends are in agreement with those expected from the evaluation of the thermal shock Hasselman’s parameters. The evidenced strength loss after thermal shock may be related to the subcritical growth of intrinsic flaws driven by localized microcracking surrounding them. Results also point out on Ni-base hardmetals to exhibit a slightly higher resistance to abrupt changes of temperature than Co-base ones.  相似文献   

15.
《Ceramics International》2016,42(14):15274-15284
The effect of WC-Co granules addition on the microstructure and mechanical properties of TiC(nm)-TiN(nm)-Co-Mo-C cermets (shown as Ti(C,N)-based cermets in other part of the paper) was studied in this paper. The results show that the WC-Co granules distribute homogeneously in the matrix of Ti(C,N) based cermets. There was a transitional layer containing intermetallic compound between the WC-Co granules and the matrix of Ti(C,N) based cermets. Transverse rupture strength(TRS) and fracture toughness increase with the increase of WC-Co granules, reach a peak value at 15 vol% addition in comparing with that of without WC-Co granules addition. The toughening mechanisms were crack deflection, branching and trapping. However, when the content of WC-Co granules was higher than 15 vol%, the excessive content of WC-Co granules leaded to voids in the cermets, which decreased the mechanical properties of the cermets.  相似文献   

16.
《Ceramics International》2020,46(8):12145-12155
Alumina-coated cubic boron nitride (c-BN) particles (c-BN@Al2O3) were prepared using a heterogeneous nucleation method. Then, they were added to a (Ti,W)C-based cermet tool material after synthesis via vacuum hot-press sintering. The microstructure and mechanical properties of the (Ti,W)C-based cermet tool material with varying c-BN@Al2O3 contents were recorded and analyzed. The results show that with increasing c-BN@Al2O3 concentration, the relative density, flexural strength, fracture toughness, and Vickers hardness all increase first and then decrease, and the average grain size first decreases and then increases. The introduction of Al2O3 into the c-BN particles used for surface modification can improve the wettability and interfacial bonding strength between the c-BN and matrix particles, restrain the grain growth of the matrix particles, and improve the flexural strength of cermet tool materials. The addition of c-BN@Al2O3 also alters the crack propagation mechanism of the cermet tool material and introduces multiple toughening mechanisms to improve the fracture toughness of the cermet tool material. The high hardness of c-BN and Al2O3 is the main reason for the increase in hardness; however, excessive addition of such material reduces the relative density, resulting in a decrease in hardness.  相似文献   

17.
With a combination of first-principles calculations and thermodynamics formalism of configurational mixing entropy, we have constructed three-dimensional phase diagram in terms of thermodynamic and structural parameters including the configurational mixing entropy and enthalpy, the temperature of the melting point, and the lattice constant difference of the constitute carbides for fifteen equiatomic quaternary high-entropy metal carbide (HEMC) ceramics of group IVB and VB refractory metals (RM = Ti, Zr, Hf, V, Nb, and Ta). We further predicted nine new HEMCs and provided an explanation for the existence of six experimentally realized quaternary HEMCs. In addition, our calculations of the melting points and mechanical properties show that the HEMCs have the unique properties of high hardness, high fracture toughness, and ultrahigh melting points. The computational procedure involved in this work may be used to design new high-entropy ceramics for specific applications.  相似文献   

18.
WC-10Co cemented carbides reinforced with 0, 0.5, 1, and 2 wt% graphene nanoplatelet (GNP) were fabricated by ball milling and spark plasma sintering (SPS). The microstructure, structural and phase analysis, hardness, and fracture toughness of WC-10Co/GNP composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and Vickers indenter. Tribological behaviors of the fabricated composites against an alumina counterface were studied using a pin on disk configuration. It was found that GNP refined the microstructure, increased the fracture toughness, and postponed the stable-to-unstable friction transition. While transgranular fracture and crack deflection were observed in the base composite, crack bridging, micro-crack formation, and crack deflection were the major toughening mechanisms in GNP-reinforced cemented carbides. The addition of 1 wt% GNP resulted in the highest hardness and wear resistance. However, at higher GNP contents, both hardness and wear resistance decreased due to the agglomeration of GNPs. Widespread abrasive grooving and Co binder extrusion were characterized as the main controlling mechanisms of wear in GNP-free cemented carbides. The wear of GNP-reinforced cemented carbides was dominated by the formation of a lubricating surface layer and its cracking or fragmentation. Plastic flow is much less likely to occur in the presence of GNPs.  相似文献   

19.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

20.
Group VI transition metals do not form room temperature stable carbides with a rock salt structure, however, they can be incorporated into a rock salt high entropy carbide lattice. Novel 5-metal high entropy carbides (Cr, Zr, Nb, Hf, Ta)C (HEC5-Cr) were produced using spark plasma sintering and compared with 4-metal carbide (Zr0.25Nb0.25Hf0.25Ta0.25)C (HEC4) and 8-metal carbide containing Cr (HEC8-Cr). The HEC5-Cr ceramics had higher density and smaller grain size (~14 µm) compared with HEC4 (~28 µm). The solubility limit of Cr on the metal site increased from ~2.5 at% for HEC5-Cr to ~6.0 at% for HEC8-Cr, implying that the high entropy effect increased the solubility of Cr. A significant Cr enrichment was observed at the grain boundaries of HEC5-Cr, and it showed a ~14% increase in nanohardness and a similar indentation modulus compared with HEC4. The nanohardness of HEC5-Cr was up to 41.2 GPa due to increased solid solution strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号