首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

2.
《Ceramics International》2022,48(11):15414-15421
Ferroelectric photovoltaic (FE-PV) materials have generated widespread attention due to their unique switchable photovoltaic behavior, but suffering from low photocurrent and remanent polarization. Herein, enhanced ferroelectric polarization and switchable photovoltaic in BiFeO3 based thin films were achieved by the optimization of Bi content. The compact and uniform films with few defects were obtained by the control of chemical composition. The remanent polarization increased from 3.4 to 73.9 μC cm?2 showing a qualitative leap. Intriguingly, the control range of photovoltaic signal between two polarization directions of the short-circuit current density (JSC) and open circuit (VOC) in present films exhibited an increase of 99.2% and 278.9%, respectively. It is suggested that the ferroelectric polarization was the main driving force for enhancing switchable ferroelectric photovoltaic. Therefore, the present work outstands a simple idea to enhance switchable ferroelectric photovoltaic based on the chemical engineering, providing a promising pathway for the development of photovoltaic devices.  相似文献   

3.
The pure and Mn-doped K0.5Na0.5NbO3 (KNN) films were deposited using solution-gelation method. The crystal structure, ferroelectric properties, spectral response and J-V performance of photovoltaic effect were systematically investigated. Both the ferroelectric and leakage properties are obviously enhanced for Mn-doped KNN films. A fascinating phenomenon is observed that the ferroelectric photovoltaic effect is enhanced in Mn-doped KNN films, which is originated from the improved ferroelectric polarization and narrower band gap. The transition element Nb partially substituted by Mn results in the lattice distortion and further destroys the symmetry space structure, which enhances ferroelectric polarization. And the narrower band gap effectively decreases the internal potential barrier to separate the carriers. This work gives a clear relationship between the lattice distortion, ferroelectric and photovoltaic response. It is certain that lead-free transparent K0.5Na0.5NbO3 films can be potentially applied in viable ferroelectric based solar cells.  相似文献   

4.
Ferroelectric thin films with switchable polarization and anomalous photoelectric effects have received extensive attention recently. However, the improvement of photoelectric performance is accompanied by the weakening of ferroelectricity. Here, both chemical and interlayer design are used to regulate the polarization and optical properties of BiFeO3-based ferroelectric films. We achieved an improvement in both ferroelectricity and bandgap by chemical composition. The remanent polarization has been enhanced to 73.8 μC/cm2 from 0.2 μC/cm2, ascribed to the structural transition. The band gap of Eu-BiFeO3 films has been reduced to 2.23 eV from 2.42 eV due to the unique energy level from Eu 4f, indicating the enhanced visible-light-absorbing capability. We have designed a "sandwich" interfacial structure of homogeneous Eu-BiFeO3 films. A clever combination between optimal ferroelectricity and narrow band gap with near Eu contents of BFO films would generate an interfacial layer with a homogeneous gradient component, which should favor the switching of ferroelectric domains. The results show that the remanent polarization improved by 17 % to 86.2 μC/cm2 while the band gap has also improved. Intriguingly, the short-circuit current density (Jsc) and open circuit (Voc) of the photovoltaic signal of the optimal films are 89.0 nA and 0.412 V, respectively. This provides a simple and intelligent way to design the ferroelectric-photoelectric thin films and lays the foundation for optical information storage devices.  相似文献   

5.
Annealing parameter and thickness are two significant factors affecting microstructure and electrical performance of sol-gel derived 0.65Pb(Mg1/3Nb2/3)O3?0.35PbTiO3 (0.65PMN-0.35PT) thin film. In this paper, various durations are firstly selected for the investigations on annealing parameter of 0.65PMN-0.35PT thin film. Enhanced insulating and ferroelectric properties can be obtained for the film annealed for 1 min due to its phase-pure and homogeneous perovskite structure. Based on this, a series of 0.65PMN-0.35PT thin films with various thicknesses by modifying deposition layer are synthesized annealed for 1 min and the effects of thickness on crystalline, insulating, ferroelectric and dielectric properties are characterized. It reveals that thickness-dependent behavior can be noticed for 0.65PMN-0.35PT thin film with the results that the 8-layered film possesses a relative large remanent polarization (Pr) of 23.34 μC/cm2, and reduced leakage current density of 10?9 A/cm2 with low dissipation factor (tanδ) of 0.03 can be achieved for the 14-layered film.  相似文献   

6.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   

7.
In this study, ternary ferroelectric 0.06Pb(Mn1/3Nb2/3)O3–0.94Pb(Zr0.48Ti0.52)O3 (PMN–PZT) thin film with high piezoelectric coefficient were grown on La0.6Sr0.4CoO3-buffered Pt/Ti/SiO2/Si substrate by RF magnetron sputtering method. The phase and domain structure along with the macroscopic electrical properties were obtained. Under the optimized temperature of 550°C and sputtering pressure 0.9 Pa, the PMN–PZT film owned large remnant ferroelectric polarization of 62 μC/cm2. In addition, the PMN–PZT film had polydomain structures with fingerprint-type nanosized domain patterns and typical local piezoelectric response. Through piezoelectric force microscopy, the PMN–PZT thin film at nanoscale exhibited obvious domain reversal when subjected to in situ poling field. It was further found that the quasi-static piezoelectric coefficient of the PMN–PZT thin film reached 267 pC/N, which was about twice to that of the commercial PbZrO3–PbTiO3 (PZT) thin film. The optimized relaxor ferroelectric thin film PMN–PZT on silicon with global electrical properties shows great potential in the piezoelectric micro-electro-mechanical systems applications.  相似文献   

8.
《Ceramics International》2022,48(17):25128-25139
The rare combination of ferroelectricity, low band gap and high carrier mobility in a material can facilitate exceptional photovoltaic efficiency. In this paper, we attempted to reduce the band gap and improve the conductivity of ferroelectric solid solution BiY(1-x)MnxO3 by varying composition. The BiY(1-x)MnxO3 (x = 0.0, 0.10, 0.25, 0.50, 0.75) samples were prepared by high energy ball milling method and structural, dielectric, optical, electrical and ferroelectric properties were analyzed systematically. Herein, we show that band gap of the material is drastically reduced from 3.0 eV (BiYO3) to 1.76 eV (x = 0.50) and the samples exhibit ferroelectric behavior with significant polarization. Compound resistance of grain and grain boundaries were also found to reduce with increase in Mn concentration in the BiY(1-x)MnxO3 solid solution, demonstrating improvement in semiconducting behaviour of the material. Thus, solid solution formation of BiMnO3 with BiYO3, tunes band gap in useful region, improves electrical conduction and enhances ferroelectric polarization showing good potential for high performance solar cell and thermoelectric applications.  相似文献   

9.
We report the enhancement of c-axis ferroelectric properties in an epitaxial (001) SrBi2Ta2O9 (SBT) thin film originating from the oxygen vacancy. We controlled the oxygen vacancy in the SBT thin film by using the electrical stress process triggering the polarization fatigue. As a result of the fatigue test for the Pt/SBT/Nb:STO capacitor, we observed the gradual increase in the ferroelectric polarization up to 1012 fatigue cycles and then subsequently rapid decrease over 1012 cycles. Based on piezoresponse force microscopy (PFM) measurements, we demonstrated the increase in the polarization and PFM signal resulting from the creation of oxygen vacancy.  相似文献   

10.
Bismuth ferrite (BiFeO3) is an attractive multiferroic material that shows strong ferroelectric and antiferromagnetic properties. Nevertheless, producing high-quality oriented BiFeO3 on technology-important platinized silicon substrates by low-cost solution deposition methods is still challenging. In this work, polycrystalline Mn and Ti co-doped BiFeO3 (BFO) thin films were fabricated on platinized silicon substrates by a solution deposition method. PbTiO3 nanocrystals were used as a seed layer between the electrode and the BFO thin films to induce a preferential (100) pseudocubic orientation. We show that the introduction of a PbTiO3 seed layer strongly reduces the leakage current. The films show excellent room-temperature ferroelectric properties at low frequencies (300 Hz), with epitaxial-like remanent polarization as high as 51 μC/cm2 and coercive field of 500 kV/cm.  相似文献   

11.
The ferroelectric domain wall motion was investigated in epitaxial PbTiO3 and BiAlO3 thin films on SrRuO3/SrTiO3 substrates. To determine the switching speeds of two ferroelectric capacitors consisting of PbTiO3 and BiAlO3 thin films, the switching currents of the two capacitors were measured as a function of time. The BiAlO3 thin film showed faster switching behavior than the PbTiO3 thin film. Data from a piezoelectric force microscope study indicated that the high domain wall motion of the BiAlO3 thin film is due to its low activation energy.  相似文献   

12.
We report a power conversion efficiency of ~0.01% in multistacking of BiFeO3/BiCrO3 bilayer thin films used as active layers in a photovoltaic (PV) device. The films were epitaxially deposited by pulse laser deposition onto (100) oriented CaRuO3‐coated LaAlO3 substrates and were subsequently illuminated with 1 sun (AM 1.5). The fill factor is determined to be 0.31%, a remarkable value for ferroelectric‐ and multiferroic‐based PV devices. Our results demonstrate that photocurrent density and photovoltage can be tuned by varying the thickness and number of respective bilayers in the improvement of PV properties of multiferroic heterostructures. The maximum photocurrent is generated at an optimal multilayer thickness of 60 nm, with its origin being mainly ascribed to the contribution of ferroelectric polarization.  相似文献   

13.
《Ceramics International》2022,48(5):6347-6355
BiFe1-2xZnxMnxO3 (BFZMO, with x = 0–0.05) thin films were synthesized via sol–gel method. Effects of (Zn, Mn) co-doping on the structure, ferroelectric, dielectric, and optical properties of BiFeO3 (BFO) films were investigated. BFZMO thin films exhibit rhombohedral structure. Scanning electron microscopy (SEM) images indicate that co-doping leads to a decrease in grain size and number of defects. Leakage current density (4.60 × 10?6 A/cm2) of BFZMO film with x = 0.02 was found to be two orders of magnitude lower than that of pristine BFO film. Owing to decreased leakage current density, saturated PE curves were obtained. Maximum double remnant polarization of 413.2 μC/cm2 was observed for BFZMO thin film with x = 0.02, while that for the BFO film was found to be 199.68 μC/cm2. The reason for improved ferroelectric properties is partial substitution of Fe ions with Zn and Mn ions, which resulted in a reduction in the effect of oxygen vacancy defects. In addition, co-doping was found to decrease optical bandgap of BFO film, opening several possible routes for novel applications of these (Zn, Mn) co-doped BFO thin films.  相似文献   

14.
《Ceramics International》2023,49(8):12462-12468
The broadband spectrum detection from ultraviolet to near-infrared is hankered in the photoelectric applications of imaging, sensing and communication. Here, a new self-powered photodetector based on ferroelectric LuMnO3 thin film with a narrow bandgap of 1.46 eV exhibits high-sensitivity ultraviolet–visible–near infrared photodetection properties. The responsivity (R) and detectivity (D*) in sunlight are 0.4 A/W and 7.05 × 1011 Jones, which are much higher than that of other ferroelectric photodetectors. Moreover, under the monochromatic light (900 nm), the R and D* can reach 0.39 A/W and 6.89 × 1011 Jones. The outstanding photodetection performances owed to the large photocurrent output, where the short-circuit current density can reach 10.5 mA/cm2 under 1 sun illumination. The synergistic effect of ferroelectric photovoltaic effect and interface barrier effect demonstrates that the multi-driving forces can achieve high dissociation efficiency for photon-generated carriers. The excellent photodetection performances open up new application of ferroelectric materials in broadband self-powered photodetectors.  相似文献   

15.
Inorganic perovskite [KNbO3]0.9[BaNi0.5Nb0.5O3‐σ]0.1 (KBNNO) ferroelectric thin films with narrow band gap (1.83 eV) and high room‐temperature remnant polarization (Pr = 0.54 μC/cm2) was grown successfully on the Pt(111)/Ti/SiO2/Si(100) substrates by pulsed laser deposition. Ferroelectric solar cells with a basic structure of ITO/KBNNO/Pt were further prepared based on these thin films, which exhibited obvious external‐poling dependent photovoltaic effects. When the devices were negatively poled, the short‐circuit current and open‐circuit voltage were both significantly higher than those of the devices poled positively. This is attributed to enhanced charge separation under the depolarization field induced by the negative poling, which is superimposed with the built‐in field induced by the Schottky barriers at the interfaces between KBNNO and the two electrodes. When a poling voltage of ‐1 V was applied, the device showed a short‐circuit current as high as 27.3 μA/cm2, which was by two orders of magnitude larger than that of the KBNNO thick‐film (20 μm) devices reported previously. This work may inspire further exploration for lead‐free inorganic perovskite ferroelectric photovoltaic devices.  相似文献   

16.
Effects of (Nd, Cu) co-doping on the structural, electrical and ferroelectric properties of BiFeO3 polycrystalline thin film have been studied. Pure and co-doped thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Significant improvements in the electrical and the ferroelectric properties were observed for the co-doped thin film. The remnant polarization (2Pr) and the coercive field (2Ec) of the co-doped thin film were 106 μC/cm2 and 1032 kV/cm at an applied electric field of 1000 kV/cm, respectively. The improved properties of the co-doped thin film could be attributed to stabilized perovskite structures, reduced oxygen vacancies and modified microstructures.  相似文献   

17.
《Ceramics International》2017,43(8):5901-5906
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thin films were deposited on Pt/Ti/SiO2/Si substrates annealed from 550 to 700 °C using sol-gel process. The effects of annealing temperature on microstructure, insulating, ferroelectric and dielectric properties were characterized. The result reveals that 0.65PMN-0.35PT thin films possess a polycrystalline structure, matching well with the perovskite phase despite the existence of a slight pyrochlore phase. The film samples annealed at all temperatures exhibit relatively dense surfaces without any large voids and the grain size increases generally with the increase of the annealing temperature. Meanwhile, pyrochlore phase is considerably generated because of the deformation of perovskite phase caused by volatilization of Pb at an excessive high-temperature. The film annealed at 650 °C exhibits superior ferroelectricity with a remanent polarization (Pr) value of 13.31 μC/cm2, dielectric constant (εr) of 1692 and relatively low dielectric loss (tanδ) of 0.122 at 104 Hz due to the relatively homogeneous large grain size of 130 nm and low leakage current of approximately 10-6 A/cm2.  相似文献   

18.
《Ceramics International》2016,42(11):13061-13064
Polycrystalline Bi3.15Nd0.85Ti3O12 (BNT) thin films were prepared on Pt/Ta/glass substrates by a pulsed laser deposition method. X-ray diffraction measurements revealed that the BNT thin films were preferentially oriented along the (117) direction although they possessed a polycrystalline structure. Good ferroelectric properties of the BNT thin film were observed with a remnant polarization of 13 μC/cm2 (2 Pr ~26 μC/cm2). The fatigue resistance test exhibited that the ferroelectric polarization of the BNT thin film degraded significantly after around 109 switching cycles, which can be attributed to its crystal structure. We investigated the surface morphology and ferroelectric domain structure by atomic force microscopy (AFM) and piezoresponse force microscopy (PFM), respectively. Interestingly, mixed grains consisting of long and circular shapes were observed on the BNT film surface, which corresponded to a- and c-axes orientations of crystal growth, respectively. The PFM study revealed that the piezoelectric coefficient (d33) of the long grains was much larger than that of the circular grains.  相似文献   

19.
《Ceramics International》2016,42(5):6033-6038
Transition metal (TM=Fe, Ni and Mn) ions doped PbTiO3 perovskite ferroelectric ceramics prepared by a solid state reaction method have been studied by means of structural characterizations, optical and magnetic measurements. All the samples have pure tetragonal perovskite structure, but exhibit different grain shapes and sizes with the introduction of TM ions and oxygen vacancies. The observed structural changes arise from internal lattice strain, which is estimated by Williamson–Hall (W–H) analysis model. Moreover, TM ions doping plays simultaneously an important role on the energy band structure and magnetic orderings. The energy gap of PbTi0.95TM0.05O3−δ shows a drastic decrease compared to that of PbTiO3. Furthermore, PbTi0.95TM0.05O3-δ materials possess multiple magnetism switching, in which diamagnetic–ferromagnetic transition and ferromagnetic–paramagnetic transition occur. In particular, the Fe-doped PbTiO3 ceramic presents a typical ferromagnetic hysteresis, originating from the effective exchange coupling interaction between oxygen vacancies and Fe 3d spins.  相似文献   

20.
Polarization is one of the unique properties of ferroelectric materials; yet the polarization mechanism for enhancing ferroelectric photovoltaic performance is rarely been investigated, particularly in terms of bandgap variation. In this work, the effect of high-field polarization on the enhanced photovoltaic performance of a ferroelectric ceramic, 0.98KNbO3–0.02SrCo0.5Hf0.5O3−δ (KNSCH2), was explored in terms of bandgap variation. The bandgap of the KNSCH2 sample shrank after polarization because of the increase in potential energy band overlap and the upward shift of the valence band due to increased oxygen-vacancy defects. The polarization optimized the energy band structure of KNSCH2, promoting the separation and transport of photoinduced carriers and thus further enhancing its photovoltaic performance. The KNSCH2 sample shows a twofold enhancement in Jsc after 60 kV/cm polarization. The degree of the lattice distortion of KNSNH2 increased following polarization, causing a minute increase in its cell asymmetry. The reasons for the bandgap narrowing and the creation of sub-bandgaps in the KNSCH samples were also investigated. This work opened new doors to understanding the mechanisms underlying the polarization-enhanced photovoltaic performance of ferroelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号