首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(8):10014-10020
Li4SiO4 pebbles have been widely studied as attractive tritium breeding materials in the fusion reactor blanket of international thermonuclear experimental reactor (ITER). In this work, surfactant-assisted hydrothermal method was first employed to prepare ultrafine ceramic powders for fabricating attractive Li4SiO4 pebbles. SEM analysis revealed that the introduction of sodium dodecyl sulfate could eliminate the particle aggregation to prepare monodispersed precursor powders, and thus generated the green bodies of pebble with homogeneous microstructure, which was helpful to eventually obtain high-quality Li4SiO4 pebbles. Moreover, the effects of sintering temperature on the grain size, relative density, and crush load of Li4SiO4 pebbles were also investigated. Li4SiO4 pebbles sintered at 700 °C had a high crush load (average value 27.39 N), small grain size (average value 0.57 μm), satisfactory density (88.13%T.D.) and abundant pore structure, which were expected to show favorable tritium release behavior as a promising tritium breeding material for fusion reactor blanket.  相似文献   

2.
Li2TiO3 is a candidate material for tritium breeding in the future nuclear fusion reactor. In this study, Li2TiO3 powder was synthesized by ultrasonic-assisted solution combustion synthesis (USCS) in a single step. The ultrasonic transducer with the power of 1000 W was introduced in the synthesis process. The crystallite size of Li2TiO3 powder prepared by utilization of ultrasonic power is significantly decreased to ∼5.0 nm, while the one obtained without ultrasonic power is 20.0 nm. Li2TiO3 ceramic sintered from USCS powder at 800 °C exhibits the small grain size of 330 nm and the open pores size of 140 nm. The crush load of the ceramic reaches 37.2 N although the structure is porous. Compared with the ceramic prepared by solid-state reaction and conventional solution combustion synthesis, USCS sample has a higher conductivity of 2.0 × 10−6 S m−1 at room temperature, indicating the lower tritium diffusion barrier in the ceramic.  相似文献   

3.
The tritium breeder and structural materials are necessary components in the blanket to realize tritium (T) self-sustainment of nuclear fusion. The long-term exposure between tritium breeders and structural materials will cause surface corrosion in irradiation environments and then further affect the tritium release behavior. In this study, chemical compatibility between Li2TiO3 ceramic pebbles and advanced structural materials was studied systematically at 700 °C for 300 h under He+0.1 % H2 environment, respectively. The color of the Li2TiO3 ceramic pebbles changes from white to dark grey and black. Moreover, the grain size of Li2TiO3 ceramic pebbles increases to more than 5 μm, and the crushing load decreased slightly. For the structural materials, the Al-rich oxide layer with about 188.7 nm of 14Cr-5Al oxide dispersion strengthened (ODS) steel and Cr-Fe rich oxide layer with about 1.04 μm of 14Cr-ODS steel were observed on the cross-section. The effective diffusion coefficient of O element in Li2TiO3 ceramic moved into ODS steel at 700 °C was calculated to be 3.3 × 10−16cm2/s and 1.02 × 10−14 cm2/s. Unfortunately, when SiC ceramics were contacted with the pebbles, the crystal phase transformed into SiO2, which severely limits its application. Therefore, these results will provide guidance for the selection of structural materials in the future.  相似文献   

4.
A large amount of Li-containing ceramic breeder pebbles is packed in the solid breeding blanket of a nuclear fusion reactor. Several pebble fabrication technologies have been proposed in previous studies, including wet process, emulsion method, extrusion spheronization, additive manufacturing, and melt process. However, a simple, energy-effective, and scalable fabrication technology remains to be developed for the automated mass production and reprocessing of used radioactive pebbles post-operation. Selective laser melting potentially enables the quick and automated fabrication of breeder pebbles. Herein, we employ a high-power density pulse laser to produce ceramic breeder pebbles. A pulsed YAG laser was irradiated over a lithium metatitanate (Li2TiO3) powder bed in air, and the corresponding temperature was monitored using fiber-type infrared pyrometers. Spherical Li2TiO3 pebbles were successfully fabricated in a single step with an average diameter of 0.78 ± 0.13 μm and the sintering density of 87.4% ± 5.6% (input power: 7.9 J/pulse). The irradiated Li2TiO3 powder melted and turned spherical under surface tension and rapidly solidified, resulting in uniaxial fine grains and a decrease in the degree of long-range cation ordering.  相似文献   

5.
《Ceramics International》2019,45(14):17114-17119
Lithium metatitanate (Li2TiO3) ceramic pebbles were fabricated from the powder synthesised via low-temperature solid-state precursor method. Solid H2TiO3 and LiOH·H2O react chemically during ball milling process to form a nano-sized precursor powder. Pure β-Li2TiO3 powder can be obtained by calcining the precursor powder at 500 °C, which is half the temperature of conventional solid-state method. The synthesis process is simple and low-cost, which would be more available to achieve batch production among all feasible techniques. The low-temperature calcination will effectively avoid hard particle aggregates and poor sinterability caused by high-temperature heat treatment, which is conducive to prepare ceramics with good properties. The results show that the powder exhibits high sinterability with small particle size of 19 nm. The Li2TiO3 ceramic pebbles sintered at 800 °C have small grain size (470 nm), high relative density (83%) and good crush load (45 N), which has great potential as tritium breeding materials for fusion reactors.  相似文献   

6.
The bi-phase Li2TiO3–Li4SiO4 ceramic pebbles have been considered a promising breeder to realize the tritium self-sustainment in the blanket. However, up to now, the reported ceramic pebbles have the disadvantages of low yield, poor crushing load, and loose internal structure, which cannot meet the practical application requirements. In this work, the Li2TiO3–Li4SiO4 ceramic pebbles with excellent mechanical properties were fabricated successfully via the centrifugal granulation method with the assistance of introducing a spray-drying process, simulating particle trajectory by discrete element software and improving bonding interface between core and shell with ethylene glycol. The composition, microstructure, and inner structure of the Li2TiO3–Li4SiO4 ceramic pebbles were investigated, respectively, through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray computed tomography (CT). It can be found that the employment of the ethylene glycol solution on the surface of Li2TiO3 can make the core and the shell combine well. Moreover, the effect of the rolling speed of the Li2TiO3–Li4SiO4 ceramic pebbles was investigated via discrete element method (EDEM) simulation and experiments. The experimental results displayed that the Li2TiO3–Li4SiO4 ceramic pebbles sintered at 1100°C for 2 h have a uniform diameter of 1 mm, a good sphericity of 0.97, and an excellent crushing load of 82.4 N, which are superior to those pebbles that obtained by using the traditional wet methods. Moreover, the CT results showed that the appropriate porosity of the core was 3.21% and of the shell was 10.73%. Therefore, the simple centrifugal granulation method can be applied to prepare the Li2TiO3–Li4SiO4 ceramic pebbles in a large scale and shed a light to investigate the relevant advanced biphasic tritium breeder materials in the future.  相似文献   

7.
Lithium titanate (Li2TiO3) is one of the promising candidate breeders for tritium self-sufficiency of deuterium(D)-tritium(T) fusion reaction. The differences in powder synthesis methods have a great impact on the properties of Li2TiO3 powders and the performance of Li2TiO3 ceramic pebbles. In this study, the Li2TiO3 powders were successfully synthesized by hydrothermal method and solid-state method, and then the pebbles were fabricated by the agar-based wet method. The mechanism of hydrothermal synthesis of Li2TiO3 powder was discussed. For the hydrothermal method, the Li2TiO3 powder with single phase can be obtained when the rate of Li/Ti = 2.4, and the powder presented two different morphology, which involved two reaction mechanisms, including in-situ phase transformation mechanism and dissolution-precipitation mechanism, the phase transformation from α-Li2TiO3 to β-Li2TiO3 accomplished at 400°C, which is lower than that of 750°C for solid-state method. Li2TiO3 pebbles prepared by the hydrothermal-wet method had a uniform pore distribution, an optimal grain size of 2.7 μm, a crushing load of 58.6 N, and relative density of 90.2%, respectively. In comparison, pebbles prepared by the solid-state-wet method also had better mechanical properties, which the crushing load and relative density were 53.9 N and 86.9% respectively under the optimal fabrication conditions.  相似文献   

8.
Li2TiO3 is a vital candidate breeder to solve tritium self-consistency of fusion reaction. In this study, Digital Light Processing (DLP) based on Stereolithography technology was used to fabricate Li2TiO3 pebbles for the first time. Ceramic suspensions with different solid loadings were prepared by mixing modified Li2TiO3 powder with UV-curable premixture. The size error of Li2TiO3 green pebbles was corrected by adjusting the deformation factor of equatorial radius, and the Li2TiO3 green pebbles were successfully fabricated with an accurate size. After sintering processing, the Li2TiO3 pebbles with a uniform diameter of 1.5 mm and better sphericity of 1.01 were yielded. The sintering behavior of Li2TiO3 pebbles were investigated. Results showed that the Li2TiO3 pebbles formed with 35 vol% solid loading, and sintered at 1050 ℃ had a uniform pore distribution, and also had optimal properties, such as high relative density of 93.6 %TD, and prominent crush load of 92.3 N.  相似文献   

9.
A single phase Li2TiO3 powder has been fabricated through a facile solution combustion process, using citric acid as the fuel and corresponding nitrates as oxidants. The effect of fuel-to-oxidizer ratio (0.5–1.5) on the combustion process, the phase and microstructure of the products was investigated. By using different combinations of citric acid fuel and metal nitrates, the combustion mode could be controlled. When the fuel-to-oxidizer ratio is 0.75, an eruption combustion mode is realized. Thermodynamic analysis of the combustion reaction shows that as the fuel-to-oxidizer ratio increases, the adiabatic flame temperature during combustion also increases, but the measured maximum temperature decreases. The crystallite size of Li2TiO3 powders was calculated to be 18–36 nm at different combustion modes. The as-prepared Li2TiO3 powders exhibit excellent sinterability and can be sintered to 90.7% of the theoretical density at 800 °C. The grain size of the Li2TiO3 ceramics is around 800 nm.  相似文献   

10.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

11.
In this paper, a method combining hydrolysis of tetrabutyl orthotitanate (TBOT) and solvothermal reaction was first used to fabricate nanostructured Li2TiO3 tritium breeder ceramic pebbles. Initially, superfine nanostructured Li2TiO3 powders were synthesized with average particle size of about 10?nm, according to TEM. The surface area of precursor particles synthesized via this method was found to be 115.85?m2/g by BET analysis, which is much larger than that of the product obtained using traditional methods. The results showed that precursor particles had high sintering activity. XRD pattern revealed that the phase transition temperature for monoclinic phase Li2TiO3 prepared by this method was nearly 450?°C, which was the lowest phase transition temperature reported among all wet chemical methods to date. Subsequently, investigation of ceramic sintering demonstrated that Li2TiO3 ceramic pebbles with desired nano-crystalline sizes (27.98 ~ 55.03?nm) were obtained by sintering at 500 ~ 600?°C for 4?h. The possible mechanisms were proposed based on the reaction processes of TBOT hydrolysis, solvothermal reaction and sintering.  相似文献   

12.
《Ceramics International》2020,46(4):4167-4173
A novel mass production method of lithium titanite (Li2TiO3) tritium breeder ceramic pebbles using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) assisted granulation method (APG) was proposed. A binder solution of polyvinyl alcohol (PVA) was used to modify the Li2TiO3 precursor powder. The powders with adhesive properties were prilled to form green pebbles (GPs) by spheronization at a low rotation speed and spraying with polyvinyl pyrrolidone (PVP), in several cycles. Then, the density and the crush load of the GPs were improved by high-speed rolling. Finally, the ceramic pebbles were produced by sintering. The phase, the microstructure, and the crush load of the ceramic pebbles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and with a universal tester, respectively.  相似文献   

13.
Ultrafine lithium titanate (Li2TiO3) powder was synthesized by hydrothermal method. The phase formation and transition condition among α, β, and γ-Li2TiO3 were discussed. XRD and ICP-AES showed the single α-phase was formed at 180 °C with 2 h hydrothermal reaction, and it transited into β-phase at 400 °C. SEM observation and EDS analysis confirmed the dissolution of TiO2 and the formation of α-Li2TiO3 proceeded simultaneously with preferable growth direction of (-133) lattice. During the phase transition, the powder maintained the small crystallite, which facilitated the fabrication of Li2TiO3 bulk with small grain size. After the Ar+ irradiation, the surface region to the depth of 3 μm of Li2TiO3 ceramic was affected, where the decrease of crystallization and disturbance of short-range order were confirmed by GIXRD and Raman spectroscopy. In spite of the structure change at the surface area, the ceramic bulk maintained the same.  相似文献   

14.
A novel low-temperature sinterable (1 ? x)Li2TiO3-xLi2CeO3 (x = 0.08 ? 0.16 in molar) microwave dielectric ceramic was successfully prepared by a conventional solid-state reaction method. The X-ray diffraction and scanning electron microscopy analysis revealed the coexistence of two phases with different structures owing to their good chemical stability. Their relative content was easily adjusted to achieve near-zero temperature coefficient of the resonant frequency (τf) according to the mixing rule of dielectrics. The low-temperature sintering and desirable microwave dielectric properties can be simultaneously achieved by adding Li2CeO3 to the Li2TiO3 matrix owing to its low-firing characteristic and opposite-sign τf. The composite ceramics with x = 0.14 could be well sintered at 850 °C and exhibited excellent microwave dielectric properties of εr  21.2, Qxf~ 59,039 GHz and τf ~?7.4 ppm/°C. In addition, no chemical reaction was identified between the matrix phase and Ag, suggesting that the Li2TiO3-Li2CeO3 ceramics might be promising candidates for low-temperature co-fired ceramic applications.  相似文献   

15.
《Ceramics International》2021,47(19):26978-26990
In this work, a method combining the spray-drying process and rolling ball method was first selected to mass fabricate Li2TiO3 tritium breeder ceramic pebbles. Herein, we overcome the issues namely complex production, high manufacturing cost, and lower mechanical strength in previous reports. The Li2TiO3 powder with high packing density after the spray drying process will self-agglomerate to form denser structured pebbles during the rolling ball process assisted by sesbania gum binder solution. The stability of slurry, different binder, binder concentrations, the formation mechanism, and the morphology of green pebbles were investigated by using viscometer, SEM. Moreover, the force on the Li2TiO3 green pebbles was also analyzed during the rolling ball process. After the debinding and densification process, the Li2TiO3 pebbles have a uniform diameter of 1.2 mm and good sphericity of 0.97. The Micro-CT instrument showed that the internal structure of the Li2TiO3 pebbles was dense. The experiment's confirmation shows that the Li2TiO3 ceramic pebbles sintered at 1000 °C have optimal mechanical properties such as a crushing load of 108 N and relative density of 92.4%TD, which is much larger than that of the pebbles obtained using traditional methods. This work not only overcomes the core-shell structure but also provides a new platform for better mechanical properties for studying the other materials systems in the future.  相似文献   

16.
Lead-free Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics with Li2CO3 and MnO2 additives were successfully fabricated at low firing temperature for applications in co-fired multilayer piezoactuators. The addition of Li2CO3 effectively shifted the sintering temperature from 1230 °C down to 1075 °C, where the ceramics were co-fired with a Ag/Pd (75/25) inner electrode. The prototype actuators were prepared by tape-casting method using ceramics with the composition of 0.74Bi0.5Na0.5TiO3-0.26 SrTiO3 + 0.15 wt%MnO2 + 0.45 wt%Li2CO3. The total number of active layers was 13, and each ceramic layer had a thickness of 60 μm. The actuator output a large strain up to ∼0.20% at a driving field of 4 kV/mm, due to the field-induced phase transition between the ergodic relaxor and ferroelectric phases. The excellent voltage-displacement performance of the prototype actuator demonstrates the potential for industrial applications.  相似文献   

17.
《Ceramics International》2016,42(14):15242-15246
In this work, 0.86CaWO4–0.14Li2TiO3 ceramics were prepared via a traditional solid-state process. The effects of Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) addition on the phase formation, sintering character, microstructure and microwave dielectric properties of the ceramics were investigated. A small amount of LBSCA addition could effectively lower the sintering temperature of the ceramics. X-ray diffraction analysis revealed that CaWO4 and Li2TiO3 phases coexisted without producing any other crystal phases in the sintered ceramics. The dielectric constant and Qf values were related to the amount of LBSCA addition and sintering temperatures. All specimens could obtain near-zero temperature coefficient (τf) values through the compensation of the positive τf of Li2TiO3 and the negative τf of CaWO4. The 0.86CaWO4–0.14Li2TiO3 ceramic with 0.5 wt% LBSCA addition and sintered at 900 °C for 3 h exhibited excellent microwave dielectric properties of εr=12.43, Qf=76,000 GHz and τf=−2.9 ppm/°C.  相似文献   

18.
A parallel preparation method was developed using dry powders as starting materials to synthesize multi-compositional microwave dielectric ceramics. The Li2O-Nb2O5-TiO2 ternary system was investigated as a model material. The validity of the parallel ceramic preparation process was confirmed by synthesizing a group of LiNb0.6Ti0.5O3 ceramics in parallel, which showed the same crystalline structure and close dielectric properties. The ceramic libraries with M-phase-rich samples and Li2TiO3-rich samples were prepared using the parallel process, and the microwave dielectric properties and crystal phases were investigated systematically. An excellent microwave ceramic with a composition of 0.55Li2O-0.05Nb2O5-0.40TiO2 was obtained, which has a dielectric constant of 18.4 and a high quality value (Q × f) of 79000 GHz. This parallel process can be applied extensively to explore a variety of bulk ceramic libraries for discovering new functional materials with high performances.  相似文献   

19.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

20.
In the present work, Al2O3–20 wt%Al2TiO5 composite was prepared from reaction sintering of alumina and titania nanopowders. The nano-sized raw powders were reconstituted into nanostructured particles by ball milling. Then, the nanostructured reconstituted powders were pressed and pressureless-sintered into bulk ceramics at 1300, 1400, 1500 °C for 2 h. The phase composition and microstructures of reconstituted powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope and energy-dispersive spectrometer (EDS). The microstructural analysis of the ceramic showed that the average grain size of the alumina–aluminium titanate composite increases with increasing the temperature. Also, SEM proved the existence of a proper interface between Al2TiO5 and Al2O3 grains and preferential distribution of aluminium titanate particles in the grain boundaries. XRD analysis indicated the absence of rutile titania in the sintered composite ensuring complete formation of aluminium titanate. The hardness of the samples sintered at 1300, 1400, 1500 °C were 4.8, 6.2 and 8.5 GPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号