首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(3):4393-4399
Dense BaZr0.5Ce0.3Y0.2O3−δ (BZCY532) proton conductors were prepared by a spark plasma sintering method. Their conductivities were determined in different atmospheres: dry air, wet N2 and wet H2. Moreover, the potential electronic conductivity contribution to the total conductivity was also identified by testing their total conductivities at different oxygen partial pressures (1–10−24 atm) in combination with an XPS analysis. It is found that the prepared dense BZCY532 ceramics are good proton conductors at 600 °C. In addition, the Ce3+ concentration in the dense BZCY532 ceramics is around 3.5 atm% of the total Ce element, and the electronic contribution to the total conductivity can be neglected after a postheat treatment.  相似文献   

2.
This work studied the effect of adding 10 at% Fe, Co or Ni to M-Sn-C mixtures with M = Ti, Zr or Hf on MAX phases synthesis by reactive spark plasma sintering. Adding Fe, Co or Ni assisted the formation of 312 MAX phases, i.e., Ti3SnC2, Zr3SnC2 and Hf3SnC2, while their 211 counterparts Ti2SnC, Zr2SnC and Hf2SnC formed in the undoped M-Sn-C mixtures. The lattice parameters of the newly synthesized Zr3SnC2 and Hf3SnC2 MAX phases were determined by X-ray diffraction. Binary MC carbides were present in all ceramics, whereas the formation of intermetallics was largely determined by the selected additive. The effect of adding Fe, Co or Ni on the MAX phase crystal structure and the microstructure of the produced ceramics was investigated in greater detail for the case of M = Zr. A mechanism is herein proposed for the formation of M3SnC2 MAX phases.  相似文献   

3.
The electrical properties and oxygen permeability of glass–ceramics 55SiO2–27BaO–18MgO, 55SiO2–27BaO–18ZnO and 50SiO2–30BaO–20ZnO (%mol), which possess thermal expansion compatible with that of yttria-stabilized zirconia (YSZ) solid electrolytes, were studied between 600 and 950 °C in various atmospheres. The ion transference numbers, determined by the modified electromotive force (e.m.f.) technique under oxygen partial pressure gradients of 21 kPa/(1–8) × 102 Pa and 21 kPa/(1 × 10−18–2 × 10−12) Pa, are close to unity both under oxidizing and reducing conditions. The electronic contribution to the total conductivity increases slightly on increasing temperature, but is lower than 2% and 7% for the Zn- and Mg-containing compositions, respectively. The conductivity values measured by impedance spectroscopy vary in the range (1.4–7.8) × 10−6 S/cm at 950 °C under both oxidizing and reducing conditions, with activation energies of 122–154 kJ/mol and a minor increase in H2-containing atmospheres, indicating possible proton intercalation. In agreement with the electrical measurements which indicate rather insulating properties of the glass–ceramics, the oxygen permeation fluxes through sintered sealants and through sealed YSZ/glass–ceramics/YSZ cells are very low, in spite of an increase of 15–40% during 200–230 h under a gradient of air/H2–H2O–N2 due to slow microstructural changes.  相似文献   

4.
This paper addresses the potential of mechanochemical activation of MgO and α-Fe2O3 precursor powders to obtain Fe2.3Mg0.7O4 ceramics with enhanced redox stability and electrical conductivity. X-ray diffraction (XRD) and Mössbauer spectroscopy suggest the initial formation of the spinel phase after 5 h of high-energy milling in inert gas, but after 10 h of mechanoactivation, the precursor still comprised hematite as a major phase with minor amounts of magnesiowustite as by-product. The activated mixtures can be nearly completely converted to spinel solid solution by heating to 1173 K, whereas single-phase, dense spinel ceramics can be prepared by sintering at 1773 K in inert atmosphere. These ceramics demonstrated redox stability under mildly reducing conditions (p(O2)  10 Pa), as confirmed by XRD, thermogravimetry and electrical measurements. The electrical conductivity of Fe2.3Mg0.7O4 at this oxygen partial pressure is lower compared to magnetite, but it is still as high as 60 S/cm at 1073 K and 15 S/cm at room temperature. Cooling below 1473 K in air results in a drop of conductivity due to segregation of hematite phase at the grain boundaries. However, the phase separation is kinetically stagnated at 1073 K, and, after slight initial degradation, the retained electrical conductivity is more than 3 orders of magnitude higher compared to hematite and MgFe2O4 spinel.  相似文献   

5.
《Ceramics International》2015,41(7):8702-8709
The crack healing behavior and the strength recovery of the newly introduced SiC/spinel nanocomposite were investigated. SiC/spinel nanocomposite containing 27.26 wt% SiC was prepared by the ball milling of talc, graphite and aluminum powders with subsequent annealing at 1200 °C for 1 h in a vacuum. The SEM results showed that the surface cracks produced by Vickers indenter on the prepared SiC/spinel pellets can be completely healed after sintering at 1545 °C for 1 min in air atmosphere. Furthermore, an almost complete strength recovery of the specimens can be obtained in those samples heat treated at 1550 °C for 1 min, as evaluated by diametral tensile strength (DTS) test. The formations of mullite and aluminosilicate glassy phases are the major factors which are responsible for the crack healing and strength recovery in the structure. It was found that the healing efficiency of those specimens healed at 1550 °C for 1 min is 99%.  相似文献   

6.
In situ microcantilever bending tests were carried out to evaluate the healing efficiency of pre-notched Ti2AlC ceramic after annealing at 1200 °C for 1.5 h. Microcantilevers of different orientations were fabricated with focused ion beam method at different locations, i.e. in a singular Ti2AlC grain, at a grain boundary or at the Ti2AlC–Al2O3 interface after healing. Ti2AlC microcantilever shows an anisotropic bending strength (ranging between 9.6 GPa and 4.6 GPa depending on the precise crystallographic orientations) that is closely related to the different atomic bonds in the layered structure. After healing, the Ti2AlC–Al2O3 microcantilevers exhibit almost the same strength of about 5.2 GPa, i.e. slightly higher than the cleavage strength (4.6 GPa) of the initial Ti2AlC microcantilevers. It suggests that the orientation of the matrix grain has no significant influence on the strength of healed microcantilevers. Furthermore, it turns out that the strength of the microcantilever with a healed grain boundary is at least twice the strength of the initial Ti2AlC cantilever with a grain boundary. It is concluded that the oxidation dominated self-healing mechanism of Ti2AlC ceramics can result in a perfect recovery of mechanical performance. The paper shows that the in situ microcantilever bending test provides a quantitative method for the evaluation of the strength of self-healing ceramics.  相似文献   

7.
《Ceramics International》2017,43(13):10326-10332
To improve the performance of anatase TiO2 as an anode material for sodium-ion batteries, Zn2+-doped TiO2/C composites are synthesized by a co-precipitation method. The results of XRD, EPR and XPS demonstrate that Zn2+ occupies at the Ti4+ site of TiO2 to form a solid-solution, resulting in an expansion of lattice and an increase of Ti3+ content. The expansion of lattice can enhance the stability of the crystal structure of TiO2. The increase of Ti3+ content can improve the conductivity of TiO2. Therefore, Ti0.94Zn0.06O2/C delivers a reversible capacity of 160 mA h g−1 with a capacity retention of 96% after 100 cycles at 5 C. Even charged/discharged at 10 C, this sample still exhibits a reversible capacity of 117 mA h g−1, comparing to 86 mA h g−1 for TiO2/C. The enhanced electrochemical performances can be ascribed to the improvement of the conductivity and the structural stability of TiO2 due to Zn2+-doping. Therefore, Ti0.94Zn0.06O2/C is an attractive anode material of sodium-ion batteries.  相似文献   

8.
《Ceramics International》2016,42(10):12276-12282
The chemical synthesis of nickel manganite powder was performed by a complex polymerization method (CPM). The obtained fine nanoscaled powders were uniaxially pressed and sintered at different temperatures: 1000–1200 °C for 2 h, and different atmospheres: air and oxygen. The highest density was obtained for the sample sintered at 1200 °C in oxygen atmosphere. The energy for direct band gap transition (Eg) calculated from the Tauc plot decreases from 1.51 to 1.40 eV with the increase of the sintering temperature. Indentation experiments were carried out using a three-sided pyramidal (Berkovich) diamond tip, and Young's modulus of elasticity and hardness of NTC (negative temperature coefficient) ceramics at various indentation depths were calculated. The highest hardness (0.754 GPa) and elastic modulus (16.888 GPa) are exhibited by the ceramics sintered at highest temperature in oxygen atmosphere.  相似文献   

9.
The solubility of Ti4+ in the lattice of apatite-type La9.83Si6−xTixO26.75 corresponds to approximately 28% of the Si-site density. The conductivity of La9.83Si6−xTixO26.75 (x = 1–2) is predominantly oxygen-ionic and independent of the oxygen partial pressure in the p(O2) range from 10−20 to 0.3 atm. The electron transference numbers determined by the modified faradaic efficiency technique are lower than 0.006 at 900–950 °C in air. The open-circuit voltage of oxygen concentration cells with Ti-doped silicate electrolytes is close to the theoretical Nernst value both under oxygen/air and air/10%H2–90%N2 gradients at 700–950 °C, suggesting the stabilization of Ti4+ in the apatite structure. Titanium addition in La9.83Si6−xTixO26.75 (x = 1–2) leads to decreasing ionic conductivity and increasing activation energies from 93 to 137 kJ/mol, and enhanced degradation in reducing atmospheres due to SiO volatilization. At p(O2) = 10−20 atm and 1223 K, the conductivity decrease after 100 h was about 5% for x = 1 and 17% for x = 2. The solubility of Zr4+ in the La9.83Si6−xZrxO26.75 system was found to be negligible, while the maximum concentration of Ce4+ in La9.4−xCexSi6O27−δ is approximately 5% with respect to the number of lanthanum sites.  相似文献   

10.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

11.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

12.
13.
Monolithic high purity CVD β-SiC materials were successfully joined with a pre-sintered Ti3SiC2 foil via solid-state diffusion bonding. The initial bending strength of the joints (∼ 220 MPa) did not deteriorate at 1000 °C in vacuum, and the joints retained ∼ 68 % of their initial strength at 1200 °C. Damage accumulation in the interlayer and some plastic deformation of the large Ti3SiC2 grains were found after testing. The activation energy of the creep deformation in the temperature range of 1000 – 1200 °C in vacuum was ∼ 521 kJmol−1. During the creep, the linkage of a significant number of microcracks to form a major crack was observed in the interlayer. The Ti3SiC2 interlayer did not decompose up to 1300 °C in vacuum. A mild and well-localized decomposition of Ti3SiC2 to TiCx was found on the top surface of the interlayer after the bending test at 1400 °C in vacuum, while the inner part remained intact.  相似文献   

14.
The effect of grain growth on the thermal conductivity of SiC ceramics sintered with 3 vol% equimolar Gd2O3-Y2O3 was investigated. During prolonged sintering at 2000 °C in an argon or nitrogen atmosphere, the β  α phase transformation, grain growth, and reduction in lattice oxygen content occurs in the ceramics. The effects of these parameters on the thermal conductivity of liquid-phase sintered SiC ceramics were investigated. The results suggest that (1) grain growth achieved by prolonged sintering at 2000 °C accompanies the decrease of lattice oxygen content and the occurrence of the β  α phase transformation; (2) the reduction of lattice oxygen content plays the most important role in enhancing the thermal conductivity; and (3) the thermal conductivity of the SiC ceramic was insensitive to the occurrence of the β  α phase transformation. The highest thermal conductivity obtained was 225 W(m K)−1 after 12 h sintering at 2000 °C under an applied pressure of 40 MPa in argon.  相似文献   

15.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

16.
The joining of titanium aluminum carbides has been successfully performed at high temperature and low oxygen partial pressure. The mechanism of the bonding is attributed to the preferential oxidation of Al atoms in the titanium aluminum carbides at low oxygen partial pressure, which leads to the formation of an Al2O3 layer through the joint interface. The specimens joined at 1400 °C exhibit a high flexural strength of 315 ± 19.1 MPa for Ti2AlC and 332 ± 2.83 MPa for Ti3AlC2, which is about 95% and 88% of the substrates, respectively, and the high flexural strength can be retained up to 1000 °C. The high mechanical performance of the joints is attributed to the similar density and thermal expansion coefficient values of Al2O3 to those of the Ti2AlC and Ti3AlC2 substrates. It indicates that bonding via preferential oxidation at low oxygen partial pressure is a practical and efficient method for Ti2AlC and Ti3AlC2.  相似文献   

17.
《Ceramics International》2016,42(6):6692-6700
Boron modified polyvinylsilazane was thermolyzed at 1300 °C under argon atmosphere and subsequently spark plasma sintered at 1600 °C in vacuum. The material was subjected to highly saline and constant vapor pressure environments individually to understand the influence of chemistry in propagating the subcritical cracks. The failure behavior in chloride environment was compared against humid environment using the data extracted from Raman spectroscopy, the thermodynamic characteristics of the environment and the micro-sized pore concentrations. The implications of the subcritical crack growth were derived by plotting νKI graphs for each of the samples to clearly distinguish between the effects of the surrounding mediums. The impulse to crack propagation was found to be resistive with variations in degree of crack growth alternating directly with the changes in porosity, surrounding atmosphere and defect density. The rate of energy dissipation and its hindrance at the crack tip were found to be a major player, among others, in reducing the crack propagation rate.  相似文献   

18.
《Ceramics International》2017,43(14):10691-10697
Al2O3 multi-phase composites with different volume fractions of SiC varying from 0 vol% to 30.0 vol% were fabricated by vacuum hot pressing sintering at 1600 °C under the pressure of 30 MPa for 2.0 h. The aim of this work was to investigate the effect of SiC content on the morphology and mechanical properties of the Al2O3 multi-phase composite. The results show that the addition of SiC and Ti can produce new strengthening and reinforcing phases include Ti3SiC2, TiC, Ti5Si3, which would hamper the migration of grain boundaries and promote sintering. The mechanical performances could reach the comprehensive optimal values for 20.0 vol% SiC, delamination and transgranular fracture being the major crack propagation energy dissipation mechanisms.  相似文献   

19.
《Ceramics International》2017,43(12):8579-8584
Brazing of Ti2AlC ceramics has been successfully performed using a pure Al filler metal, in the temperature range 1023 K–1173 K and with holding time ranging from 0 to 30 min. The microstructure of the Ti2AlC joints was studied, and the mechanical properties of the joints were evaluated by shear strength test. It is observed that the Al filler has weak effect on the stability of Ti2AlC substrate, and only a small amount of decomposition products including the TiCx and TiAl3 compounds can be observed in the joints. In addition, the formation of an inter-diffusion layer in the Ti2AlC substrate is considered as the major brazing mechanism. The maximum shear strength of the Ti2AlC joints using the pure Al filler metal is 95 MPa, with an electrical conductivity of 2.21×106 S m−1, after holding the sample at 1123 K for 10 min.  相似文献   

20.
Ca0.9La0.067TiO3 (abbreviated as CLT) ceramics doped with different amount of Al2O3 were prepared via the solid state reaction method. The anti-reduction mechanism of Ti4+ in CLT ceramics was carefully investigated. X-ray diffraction (XRD) was used to analyze the phase composition and lattice structure. Meanwhile, the Rietveld method was taken to calculate the lattice parameters. X-ray photoelectron spectroscopy (XPS) was employed to study the valence variation of Ti ions in CLT ceramics without and with Al2O3. The results showed that Al3+ substituted for Ti4+ to form solid solution and the solid solubility limit of Al3+ is near 1.11 mol%. Furthermore, the reduction of Ti4+ in CLT ceramics was restrained by acceptor doping process and the Q × f values of CLT ceramics were improved significantly. The CLT ceramic doped with 1.11 mol% Al2O3 exhibited good microwave dielectric properties: εr = 141, Q × f = 6848 GHz, τf = 576 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号