首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu(In1?xGax)Se2 (CIGS) thin films were prepared using a single quaternary target by RF magnetron sputtering. The effects of deposition parameters on the structural, compositional and electrical properties of the films were examined in order to develop the deposition process without post-deposition selenization. From X-ray diffraction analysis, as the substrate temperature and Ar pressure increased and RF power decreased, the crystallinity of the films improved. The scanning electron microscopy revealed that the grains became uniform and circular shape with columnar structure with increasing the substrate temperature and Ar pressure, and decreasing the RF power. The carrier concentration of CIGS films deposited at the substrate temperature of 500 °C was 2.1 × 1017 cm?3 and the resistivity was 27 Ω cm. At the substrate temperature above 500 °C, In and Se contents in CIGS films decreased due to the evaporation and it led to the deterioration of crystallinity. It was confirmed that CIGS thin films deposited at optimal condition had similar atomic ratio to the target value even without post-deposition selenization process.  相似文献   

2.
《Ceramics International》2015,41(6):7439-7445
Highly (001)-oriented Cu2-ySe thin films with tunable thermoelectric performances have been grown by pulsed laser deposition. By using targets with different Cu/Se ratios that further determines the copper deficiency of as-grown films, the carrier concentrations of as-grown films are tuned within a broad range from 1018 to 1021 cm−3. The optimum performance is observed at carrier concentration ~1.58×1020 cm−3. The distinct properties of Cu2-ySe thin films with nearly ideal chemical stoichiometric ratio are observed. In addition, a weak change in the electrical transport during the second-order phase transition was observed in the thin films due to the anisotropic structure of the Cu2-ySe.  相似文献   

3.
《Ceramics International》2017,43(6):5229-5235
Cu3SbS4 is a promising material for thin film heterojunction solar cells owing to its suitable optical and electrical properties. In this paper, we report the preparation of Cu3SbS4 thin films by annealing the Sb2S3/CuS stacks, produced by chemical bath deposition, in a graphite box held at different temperatures. The influence of annealing temperature on the growth and properties of these films is investigated. These films are systematically analyzed by evaluating their structural, microstructural, optical and electrical properties using suitable characterization techniques. X-ray diffraction analysis showed that these films exhibit tetragonal crystal structure with the lattice parameters a=0.537 nm and b=1.087 nm. Their crystallite size increases with increasing annealing temperature of the stacks. Raman spectroscopy analysis of these films exhibited modes at 132, 247, 273, 317, 344, 358 and 635 cm−1 due to Cu3SbS4 phase. X-ray photoelectron spectroscopy analysis revealed that the films prepared by annealing the stack at 350 °C exhibit a Cu-poor and Sb-rich composition with +1, +5 and −2 oxidation states of Cu, Sb and S, respectively. Morphological studies showed an improvement in the grain size of the films on increasing the annealing temperature. The direct optical band gap of these films was in the range of 0.82–0.85 eV. Hall measurements showed that the films are p-type in nature and their electrical resistivity, hole mobility and hole concentration are in the ranges of 0.14–1.20 Ω-cm, 0.05–2.11 cm2 V−1 s−1 and 9.4×1020–1.4×1019 cm−3, respectively. These structural, morphological, optical and electrical properties suggest that Cu3SbS4 could be used as an absorber layer for bottom cell in multi-junction solar cells.  相似文献   

4.
We report on an effective combination of good dielectric properties with bright red emission in Y3+/Eu3+-codoped ZrO2 thin films. The thin films were deposited on fused silica and Pt/TiO2/SiO2/Si substrates using a chemical solution deposition method. The crystal structure, surface morphology, electrical and optical properties of the thin films were investigated in terms of annealing temperature, and Y3+/Eu3+ doping content. The 5%Eu2O3–3%Y2O3–92%ZrO2 thin film with 400 nm thickness annealed at 700 °C exhibits optimal photoluminescent properties and excellent electrical properties. Under excitation by 396 nm light, the thin film on fused silica substrate shows bright red emission bands centered at 593 nm and 609 nm, which can be attributed to the transitions of Eu3+ ions. Dielectric constant and dissipation factor of the thin films at 1 kHz are 30 and 0.01, respectively, and the capacitance density is about 65.5 nf/cm2 when the bias electric field is less than 500 kV/cm. The thin films also exhibit a low leakage current density and a high optical transmittance with a large band gap.  相似文献   

5.
Bi2Zn2/3Nb4/3O7 thin films were deposited at room temperature on Pt/Ti/SiO2/Si(1 0 0) and polymer-based copper clad laminate (CCL) substrates by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were deposited in situ with no intentional heating under an oxygen pressure of 4 Pa and then post-annealed at 150 °C for 20 min. It was found that the films are still amorphous in nature, which was confirmed by the XRD analysis. It has been shown that the surface roughness of the substrates has a significant influence on the electrical properties of the dielectric films, especially on the leakage current. Bi2Zn2/3Nb4/3O7 thin films deposited on Pt/Ti/SiO2/Si(1 0 0) substrates exhibit superior dielectric characteristics. The dielectric constant and loss tangent are 59.8 and 0.008 at 10 kHz, respectively. Leakage current density is 2.5 × 10?7 A/cm2 at an applied electric field of 400 kV/cm. Bi2Zn2/3Nb4/3O7 thin films deposited on CCL substrates exhibit the dielectric constant of 60 and loss tangent of 0.018, respectively. Leakage current density is less than 1 × 10?6 A/cm2 at 200 kV/cm.  相似文献   

6.
Effects of (Nd, Cu) co-doping on the structural, electrical and ferroelectric properties of BiFeO3 polycrystalline thin film have been studied. Pure and co-doped thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Significant improvements in the electrical and the ferroelectric properties were observed for the co-doped thin film. The remnant polarization (2Pr) and the coercive field (2Ec) of the co-doped thin film were 106 μC/cm2 and 1032 kV/cm at an applied electric field of 1000 kV/cm, respectively. The improved properties of the co-doped thin film could be attributed to stabilized perovskite structures, reduced oxygen vacancies and modified microstructures.  相似文献   

7.
Ferroelectric CaBi4Ti4O15 (CBT) thin films were prepared by spin coating technology using solution-based fabrication. The as-deposited CBT thin films were crystallized below 600 °C and the layered perovskite were crystallized at 700 °C using CFA processing in air. The enhancement of ferroelectric properties in CBT thin films for MFIS structures were investigated and discussed. Compared the Bi4Ti3O12 (BIT), the CBT showed the better physical and electrical characteristics. The 700 °C annealed CBT thin films on SiO2/Si substrate showed random orientation and exhibited large memory window curves. The maximum capacitance, memory window and leakage current density were about 250 pF, 2 V, and 10?5 A/cm2, respectively.  相似文献   

8.
《Ceramics International》2017,43(13):10089-10096
The stratified WO3/TiO2 thin films have been deposited onto glass and FTO coated glass substrates using simple chemical a spray pyrolysis method. The structural, morphological, compositional and photoelectrocatalytic properties of the stratified WO3/TiO2 thin films are studied. The photoelectrochemical (PEC) study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc =1.192 mA and Voc =0.925 V) relatively high at 50 ml spraying quantity of TiO2 solution on pre-deposited WO3. XRD analysis confirms that films are polycrystalline with monoclinic and tetragonal crystal structures for WO3 and TiO2 respectively. Specific surface area of 72.14 m2 g−1 is measured by Brunauer-Emmett-Teller (BET) technique. Photoelectrocatalytic degradation of benzoic acid (BA) dye in aqueous solutions is studied. The end result shows that the degradation percentage of benzoic acid (BA) using stratified WO3/TiO2 photoelectrode has reached 66% under sunlight illumination after 320 min. The amount of degradation is confirmed by COD analysis.  相似文献   

9.
《Ceramics International》2017,43(14):11142-11148
Recently, many novel superionic thermoelectric materials have been discovered along the concept of “phonon-liquid electron-crystal” (PLEC). Among them, Cu2-xSe-based liquid-like materials are typical examples. In this study, a series of copper-deficient Cu2-xSe (0.05 ≤ x ≤ 0.25) materials were synthesized and used to study the role of Cu vacancies on the electrical and thermal transport properties. The X-ray photoelectron spectroscopy (XPS) measurements suggest that the valence states of Cu and Se are independent on the Cu/Se atomic ratio. With increasing the content of Cu vacancies, the hole concentration is monotonously increased, leading to the improved electrical conductivity and reduced Seebeck coefficient. Based on the single parabolic band model analysis, it is found that changing the content of Cu vacancies does not obviously modify the material's electronic band structure and effective mass. Due to the presence of highly mobile Cu ions inside the crystal structure, the lattice thermal conductivities of all Cu2-xSe (0.05 ≤ x ≤ 0.25) materials are very low with values around 0.39 W m−1 K−1 at 500 K. Because of the significantly reduced Seebeck coefficient and increased electronic thermal conductivity, the thermoelectric figure of merit zTs are decreased when increasing x from 0.05 to 0.25. At 750 K, a maximum zT of 0.46 is obtained in Cu1.95Se among all Cu2-xSe (0.05 ≤ x ≤ 0.25) materials.  相似文献   

10.
First bis(diorganothiophosphinyl)selenides, (R2P = S)2Se, have been synthesized in 74–86% yield by the chemoselective interaction of secondary phosphine sulfides with elemental selenium (1:1 molar ratio, 100 °C, 3 h, 1,4-dioxane); the alternative bis(diorganoselenophosphinyl)sulfides, (R2P = Se)2S, are not formed under these conditions.  相似文献   

11.
《Ceramics International》2017,43(8):6214-6220
CuxO thin films were deposited on glass and silicon substrates by High Power Impulse Magnetron Sputtering (HiPIMS) at room temperature from a metallic copper target. The influence of pulse off-time on the films’ structural, morphological and optoelectronic properties was investigated. It was found that the power intensity applied on the Cu target was strongly affected by pulse off-time, which had an important impact on the films’ composition. Upon increasing the pulse off-time from 500 μs to 3500 μs (pulse on-time fixed at 50 μs), the films’ crystallinity as well as transmittance in the visible region both ameliorate. Meanwhile, the conductivity type changed from n-type to p-type as the films’ composition changed. When the pulse off-time was fixed at 2000 μs, the optimal p-type conductivity of about 3 S × cm−1 was achieved, which is the highest p-type conductivity reported for Cu2O films in the last few years. The transition of the films’ conductivity type can be utilized for the fabrication of Cu2O-based p-n homojunction, and may also prove useful in developing other oxide films by using HiPIMS technology.  相似文献   

12.
PbZr0.53Ti0.47O3 (PZT) thin films with thickness of 0.9 μm were prepared on La0.5Sr0.5CoO3 (LSCO) coated Si substrates. Both PZT and LSCO were prepared by the sol–gel method. The concentration of LSCO sol was varied from 0.3 to 0.1 mol/L, which could modify the preferential orientation of PZT thin films and consequently affect the dielectric and ferroelectric properties. The LSCO electrode layers derived from lower sol concentration of 0.1 mol/L have much more densified structure, which facilitates the formation of (1 0 0) textured PZT films with smooth and compact columnar grains. PZT thin films prepared on the optimized LSCO films exhibit the enhanced dielectric constant and remnant polarization of 980 and 20 μC/cm2, respectively.  相似文献   

13.
《Ceramics International》2017,43(2):2033-2038
Fe-doped Na0.5Bi0.5TiO3 (NBTFe) thin films were prepared directly on indium tin oxide/glass substrates using a chemical solution deposition method combined with sequential layer annealing. The X-ray diffraction, scanning electron microscopy and insulating/ferroelectric/dielectric measurements were utilized to characterize the NBTFe thin films. All the NBTFe thin films prepared by four precursor solutions with various concentrations of 0.05, 0.10, 0.20 and 0.30 M exhibit polycrystalline perovskite structures with different relative intensities of (l00) peaks. A large remanent polarization (Pr) of 33.90 μC/cm2 can be obtained in NBTFe film derived with 0.10 M spin-on solution due to its lower leakage current and larger grain size compared to those of other samples. Also, it shows a relatively symmetric coercive field and large dielectric tunability of 36.34%. Meanwhile, the NBTFe thin film with 0.20 M has a high energy-storage density of 30.15 J/cm3 and efficiency of 61.05%. These results indicate that the electrical performance can be controlled by optimizing the solution molarity.  相似文献   

14.
Pure BiFeO3 (BFO) and (Bi0.9Gd0.1)(Fe0.975V0.025)O3+δ(BGFVO) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The improved electrical properties were observed in the BGFVO thin film. The leakage current density of the co-doped BGFVO thin film showed two orders lower than that of the pure BFO, 8.1×10?5 A/cm2 at 100 kV/cm. The remnant polarization (2Pr) and the coercive electric field (2Ec) of the BGFVO thin film were 54 μC/cm2 and 1148 kV/cm with applied electric field of 1100 kV/cm at a frequency of 1 kHz, respectively. The 2Pr values of the BGFVO thin film show the dependence of measurement frequency, and it has been fairly saturated at about 30 kHz.  相似文献   

15.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

16.
An organic–inorganic hybrid 1D helical chain arsenomolybdate {[Cu(en)2][Cu(en)(H2O)][(Cu(en)2(H2O)] [AsIIIAsVMo9O34)]} · 2H2O (1) (en = ethylenediamine) has been hydrothermally synthesized and characterized by elemental analyses, IR, UV and CD spectrum, powder X-ray diffraction, TG-DTA and single-crystal X-ray diffraction. The asymmetric unit of 1 consists of a monocapped trivacant Keggin [AsIIIAsVMo9O34]6  subunit, a pendant [Cu(en)2(H2O)]2 + cation, a pendant [Cu(en)(H2O)]2 + cation, one bridging [Cu(en)2]2 + cation and two lattice water molecules. It should be noted that 1 illustrates a one-dimensional (1D) helical chain assembled by {[Cu(en)(H2O)][(Cu(en)2(H2O)][AsIIIAsVMo9O34)]}2  clusters and [Cu(en)2]2 + linkers.  相似文献   

17.
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 °C show good electric properties. The ferroelectric nature of the BST35 thin film was indicated by butterfly-shaped C–V curves. The capacitance–frequency curves reveal that the dielectric constant may reach a value up to 800 at 100 kHz. The dissipation factor was 0.01 at 100 kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb (1–5 μC/cm2) and 265 Mb (2–11 μC/cm2) DRAMs.  相似文献   

18.
Thin films of halide free Cu–Co mixed metal oxide have been prepared at 390 °C from the heterobimetallic complex Co4(THF)4(TFA)8(μ-OH)2Cu2(dmae)2 · 0.5C7H8 (1) [dmae = N,N-dimethylaminoethanol ((CH3)2NCH2CH2O), TFA = triflouroacetate (CF3COO), THF = tetrahydrofurane (C4H8O)] which was prepared by the reaction of [Cu(dmae)Cl]4 and Co(TFA)2 · 4H2O. The precursor was characterized for its melting point, elemental composition, FTIR and X-ray single crystal structure determination. Thin films grown on glass substrate by using AACVD out of complex 1 were characterized by XRD and SEM. TGA and AACVD experiments reveal it to be a suitable precursor for the deposition of halide free Cu–Co mixed-metal oxide thin films at relatively low temperatures.  相似文献   

19.
Ferroelectric (Pb0.5,Ba0.5)TiO3 (PBT) nanometric sized powders and thin films can be synthesized by a sol–gel process incorporating acetylacetone as a chelating agent to form ligands with titanium isopropoxide. The water contents were varied to investigate the resulting effects on the properties of the PBT powders. It was found that at a lower content of water, a slower rate of hydrolyzation and polycondensation occurred, therefore, a less cross-linking gel that pyrolyzed easily was observed. This less cross-linking gel could be converted to perovskite PBT at temperatures as low as 450 °C. A high purity of perovskite powder was obtained at 500 °C, with a nano-meteric size of about 30–50 nm the specific surface area of 21.91 m2/g. PBT thin films with polycrystalline or highly preferred orientation were prepared using the as-prepared optimal sol spin coating on (1 0 0) Si or (1 0 0) MgO substrate, respectively. The films were smooth, good quality and crack-free.  相似文献   

20.
Ba β-alumina films were prepared by laser chemical vapor deposition. Mostly single-phase Ba β-alumina films were obtained at 1125–1200 K and for an Al/Ba molar ratio of 12.4–16.6. BaAl2O4 and α-Al2O3 were codeposited with Ba β-alumina under Ba- and Al-rich conditions, respectively. The Ba β-alumina films consisted of hexagonal grains, and the (1 1 0)-oriented Ba β-alumina films had a fin-like columnar structure. The highest deposition rate reached 120 μm h?1 at around 1200 K. A thin layer of Ba-rich superstructure was formed on the surface of the (1 1 0)-oriented columnar grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号