首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient Eu-TiO2/graphene composites were synthesized by a two-step method such as sol-gel and hydrothermal process. The synthesized photocatalysts were characterized by XRD, TEM, XPS, UV–vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results confirmed that anatase Eu-TiO2 nanoparticles with average 10 nm sizes were successfully deposited on two-dimensional graphene sheets. The UV–visible spectroscopy showed a red shift in the absorption edge of TiO2 due to Eu doping and graphene incorporation. Moreover, effective charge separation in Eu-TiO2/graphene composites was confirmed by PL emission spectroscopy compared to TiO2/graphene, Eu-TiO2 and pure TiO2. The photocatalytic activity for H2 evolution over prepared composites was studied under visible light irradiation (λ ≥ 400 nm). The results demonstrate that photocatalytic performance of the photocatalysts for hydrogen production increases with increasing doping concentration of Eu upto 2 at%. However, further increase in doping content above this optimum level has decreased the performance of photocatalyst. The enhanced photocatalytic performance for H2 evolution is attributed to extended visible light absorption, suppressed recombination of electron-hole pairs due to synergistic effects of Eu and graphene.  相似文献   

2.
《Ceramics International》2016,42(16):18257-18263
Novel photocatalysts based on silver (Ag), TiO2, and graphene were successfully synthesized by microwave-assisted hydrothermal method. The prepared photocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The influence of silver loading and graphene incorporation on photocatalytic hydrogen (H2) production of as-prepared samples was investigated in methanolic aqueous solution under visible light irradiation (λ≥420 nm). The results showed that Ag–TiO2/graphene composite had appreciably enhanced photocatalytic H2 production performance under visible light illumination compared to pure TiO2, Ag–TiO2 and TiO2/graphene samples. The enhanced photocatalytic hydrogen production activity of Ag–TiO2/graphene composite under visible light irradiation could be attributed to increased visible light absorption, reduced recombination of photogenerated charge carriers and high specific surface area. This novel study provides more insight for the development of novel visible light responsive TiO2− graphene based photocatalysts for energy applications.  相似文献   

3.
《Ceramics International》2017,43(3):3118-3126
Nano-composite materials of Ag nanoparticles dispersed TiO2 nanocubes with exposed {001}/{101} crystal faces were fabricated mainly via a flexible one-step method of hydrothermal treatment with different content of Ag from 1 up to 3 mol%. Prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. These analysis was carried out for understanding the contribution of different content of silver for enhancing the photocatalytic activity of TiO2 nanocubes. Prepared silver nanoparticles had small particle size and grafted to the {101} crystal face of TiO2 with the role of template control agent and linking agent. The photocatalytic performance of Ag-TiO2 nanocubes were researched via Rhodamine B dye removal under visible light irradiation ( ≧420 nm). Ag-TiO2 composite materials with the content of 2 mol% Ag showed the best photocatalytic activity for degradation of Rhodamine B, which was five times more than bare TiO2 and associated with the localized surface plasmon resonance (LSPR) propelled effect. The mechanism by which silver enhanced the photocatalytic activity of TiO2 was also demonstrated.  相似文献   

4.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

5.
The synergic effect of cation doping and phase composition for the further improvement of the photocatalytic activity of TiO2 under visible light is reported for the first time. Fe3 + and Sn4 + co-doped TiO2 with optimized phase composition were synthesized through a simple soft-chemical solution method. The visible-light-driven photocatalytic activity of Fe3 + and Sn4 + co-doped TiO2 was 5 times of that of Evonik P25 TiO2 using degradation of methylene blue as model reaction. The synthesized photocatalysts were characterized by powder X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, 119Sn Mössbauer spectroscopy, and X-ray absorption fine structure spectroscopy. It is indicated that Sn4 + doping can facilitate the phase transition from anatase to rutile. The different ratios of anatase and rutile can be achieved by tuning the amount of Sn4 + doped into the lattice. Furthermore, the doping of Sn4 + into TiO2 lattice can stabilize the phase composition when Fe3 + is co-doped. In the Fe3 + and Sn4 + co-doped TiO2, Sn4 + is mainly used to tune and stabilize the phase composition of TiO2 and Fe3 + acts as a doping cation to narrow the band gap of TiO2. Both band gap and phase composition of TiO2 can be tuned effectively by the simultaneous introduction of Fe3 + and Sn4 +. The synergic effect of optimized phase composition (anatase/rutile = 25/75) and narrowed band gap should be the two main reasons for the promoted photocatalytic activity of TiO2 under visible light.  相似文献   

6.
A series of iron-doped anatase TiO2 nanotubes (Fe/TiO2 NTs) catalysts with iron concentrations ranging from 0.88 to 7.00 wt% were prepared by an ultrasonic-assisted sol-hydrothermal process. The structures and the properties of the fabricated Fe/TiO2 NTs were characterized in detail and photocatalytic activity was examined using a reactive brilliant red X-3B aqueous solution as pollutant under visible light. The lengths of the NTs were determined to range from 20 nm to 100 nm. The incorporation of the iron ions (Fe3+) into the TiO2 nanotubes shifted the photon absorbing zone from the ultraviolet (UV) to the visible wavelengths, reducing the band gap energy from 3.2 to 2.75 eV. The photocatalytic activity of the Fe/TiO2 NTs was 2–4 times higher than the values measured for the pure TiO2 nanotubes.  相似文献   

7.
《Ceramics International》2017,43(9):6771-6777
Photocatalytic reduction of carbon dioxide (CO2) into valuable hydrocarbon such as methane (CH4) using water as reducing agent is a good strategy for environment and energy applications. In this study, a facile and simple sol-gel method was employed for the synthesis of metal (Cu and Ag) loaded nanosized N/TiO2 photocatalyst. The prepared photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, BET Surface area analyzer, X-ray photoelectron spectroscopy and UV–vis diffuses reflectance spectroscopy. The photocatalytic conversion of CO2 into methane was carried out under visible light irradiation (λ≥420 nm) by prepared photocatalysts in order to evaluate the photocatalytic efficiency. The results demonstrate that Ag loaded N/TiO2 showed enhanced photocatalytic performance for methane production from CO2 compared to other Cu–N/TiO2, N/TiO2 and TiO2 photocatalysts. The improvement in the photocatalytic activity could be attributed to high specific surface area, extended visible light absorption and suppressed recombination of electron – hole pair due to synergistic effects of silver and nitrogen in the Ag–N/TiO2 photocatalyst. This study demonstrates that Ag–N/TiO2 is a promising photocatalytic material for photocatalytic reduction of CO2 into hydrocarbons under visible light irradiation.  相似文献   

8.
《Catalysis communications》2007,8(10):1546-1549
Developing a photocatalyst system for the conversion of solar energy to electric energy or chemical energy is a topic of great interest with fundamental and practical importance. The semiconductor catalysts, such as InTaO4, have been extensively used for water splitting under visible light irradiation. However, it has not been used for photoreduction of carbon dioxide with water. InTaO4 was synthesized by solid-state reaction. NiO was added by incipient-wetness impregnation method as the cocatalysts. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV–Vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic reduction was carried out in a Pyrex reactor under visible light illumination using 500 W halogen light as the light source. The band gap of InTaO4 was estimated, from UV–Vis spectrum, to be 2.6 eV, showing that these catalysts have ability to reduce CO2 into methanol. The effects of the NiO cocatalyst and pretreatment process on the photocatalytic reduction of the catalyst to methanol were investigated. The methanol yield increased with the amount of NiO cocatalyst. The reduction–oxidation pretreatment had a positive effect on the catalyst.  相似文献   

9.
Graphene film decorated TiO2 nano-tube array (GF/TiO2 NTA) photoelectrodes were prepared through anodization, followed by electrodeposition strategy. Morphologies and structures of the resulting GF/TiO2 NTA samples were characterized by scanning electrons microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the optical and photoelectrochemical properties were investigated through UV–visible light diffuse reflection spectroscopy, photocurrent response and Mott–Schottky analysis. Furthermore, the photodecomposition performances were investigated through yield of hydroxyl radicals and photocatalytic (PC) degradation of methyl blue (MB) under visible light irradiation. It was found that GF/TiO2 NTA photoelectrode exhibited intense light absorption both in UV light and visible region, higher transient photoinduced current of 0.107 mA cm−2 and charge carrier concentration of 0.84 × 1019 cm−3, as well as effective PC performance of 65.9% for the degradation of MB. Furthermore, contribution of several reactive species to the PC efficiency of GF/TiO2 NTA photoelectrode was distinguished. Moreover, the enhanced visible light PC mechanism was proposed and confirmed in detail.  相似文献   

10.
A novel TiO2  xNx/BN composite photocatalyst was prepared via a facile method using melamine–boron acid adducts (M·2B) and tetrabutyl titanate as reactants. The morphological results confirmed that nitrogen-doped TiO2 nanoparticles were uniformly coated on the surface of porous BN fibers. A red shift of absorption edge from 400 nm (pure TiO2) to 520 nm (TiO2  xNx/BN composites) was observed in their UV–Vis light absorption spectra. The TiO2  xNx/BN photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) and the highest photocatalytic degradation efficiency reached 97.8% under visible light irradiation for 40 min. The mechanism of enhanced photocatalytic activity was finally proposed.  相似文献   

11.
In the present study rare earth doped (Ln3+–TiO2, Ln = La, Ce and Nd) TiO2 nanofibers were prepared by the sol–gel electrospinning method and characterized by XRD, SEM, EDX, TEM, and UV-DRS. The photocatalytic activity of the samples was evaluated by Rhodamine 6G (R6G) dye degradation under UV light irradiation. XRD analysis showed that all the synthesized pure and doped titania nanofibers contain pure anatase phase at 500 °C but at 700 °C it shows both anatase and rutile phase. XRD result also shows that Ln3+-doped titania probably inhibits the phase transformation. The diameter of nanofibers for all samples ranges from 200 to 700 nm. It was also observed that the presence of rare-earth oxides in the host TiO2 could decrease the band gap and accelerate the separation of photogenerated electron–hole pairs, which eventually led to higher photocatalytic activity. To sum up, our study demonstrates that Ln3+-doped TiO2 samples exhibit higher photocatalytic activity than pure TiO2 whereas Nd3+-doped TiO2 catalyst showed the highest photocatalytic activity among the rare earth doped samples.  相似文献   

12.
《Ceramics International》2017,43(15):12102-12108
Three bismuth sillenite compounds with the general composition, Bi12XO20 (X = Si, Ge, Ti), were prepared by a conventional solid state synthesis route and their local crystal structure, light absorption and visible-light induced photocatalytic activities were systematically investigated. The prepared powder samples show comparable particle size distribution (~ 0.5–5 µm) and BET surface area (~ 0.8 m2/g). The optical band gap energies were estimated from diffuse reflectance spectra to be in the range 2.6–2.9 eV. The local crystal structure variation and its influence on the electronic band structure was elucidated in the three sillenite compounds by Raman analysis and density functional theory (DFT). The visible-light induced photocatalytic activity was evaluated by monitoring the degradation of rhodamine B dye solution under visible-light irradiation (> 420 nm). We found that the Bi12TiO20 powder shows the highest photocatalytic activity, which is attributed to the higher visible light absorption and the smaller band gap resulting from its distinct local crystal structure (longer Bi-O distance).  相似文献   

13.
Visible-light-sensitive sub-5 nm anatase titanium dioxide (TiO2) nanoparticles (NPs) were fabricated without any doping and calcination treatments. The energy band gap was effectively narrowed to ~ 2.98 eV. The surface and subsurface hydroxyl defects were ascertained as the origin for the band gap narrowing and for the efficient azo-based dye degradation in water and formaldehyde decomposition in air, as well as disinfection of Staphylococcus aureus bacteria, under visible light irradiation.  相似文献   

14.
TiO2 hollow nanostructures were successfully synthesized by a controlled hydrothermal precipitation reaction using Resorcinol–Formaldehyde resin spheres as templates in aqueous solution, and then removal of the RF resins spheres by calcination in air at 450 °C for 4 h. The obtained TiO2 hollow spheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption analysis, and UV–visible diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution at ambient temperature under UV illumination. The results indicated TiO2 hollow nanostructures exhibit the excellent photocatalytic activity probably due to the unique hollow micro-architectures.  相似文献   

15.
《Ceramics International》2016,42(6):7192-7202
In this paper, a series of CdS/TiO2 NTs have been synthesized by SILAR method. The as-prepared CdS/TiO2 NTs have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), and ultraviolet–visible (UV–vis). And their photocatalytic activities have been investigated on the degradation of methylene blue under simulated solar light irradiation. XRD results indicate that TiO2 NTs were anatase phase, CdS nanoparticles were hexagonal phase. FESEM results indicate that low deposition concentration can keep the nanotubular structures. UV–vis results indicate that CdS can be used to improve the absorbing capability of TiO2 NTs for visible light, and the content of CdS affects the band gap. Photocatalytic results indicate that CdS nanoparticles are conducive to improve the photocatalytic efficiency of TiO2 NTs, and the highest degradation rate can reach 93.8%. And the photocatalytic mechanism of CdS/TiO2 NTs to methylene blue is also described.  相似文献   

16.
TiO2 microspheres were synthesized by hydrothermal reaction using Ti(OBu)4 as the precursor. In order to enhance the efficiency of water splitting by the TiO2 microspheres, Pt-modified TiO2 microspheres were prepared by the impregnation-reduction method. The diameter of TiO2 microspheres is around 5–10 μm. The photocatalytic performances of the catalysts were measured by hydrogen generation from a mixture of water and methanol under UV light irradiation. The photocatalytic activity of the TiO2 microspheres was remarkably enhanced by loading Pt. The optimal Pt loading is 1.2 wt%. Pt/TiO2 microspheres exhibit about 125 times greater H2 production rate than the unmodified TiO2 microspheres. The effect of calcination temperature on photocatalytic activity of the TiO2 microspheres was also investigated.  相似文献   

17.
《Ceramics International》2016,42(4):5113-5122
TiO2 nanoparticles are currently used as coating for self-cleaning building products. In order to achieve high self-cleaning efficiency for outdoor applications, it is important that titania is present as anatase phase. Moreover, it is desirable that the particle sizes are in nano-range, so that a large enough surface area is available for enhanced catalytic performance. In this work, TiO2 nanoparticles doped with 0–5 mol% Nb2O5 were synthesized by co-precipitation. Nb2O5 postponed the anatase to rutile transformation of TiO2 by about 200 °C, such that after calcination at 700 °C, no rutile was detected for 5 mol% Nb2O5-doped TiO2, while undoped TiO2 presented 90 wt% of the rutile phase. A systematic decreasing on crystallite size and increasing on specific surface area of TiO2 were observed with higher concentration of Nb2O5 dopant. Photocatalytic activity of anatase polymorph was measured by the decomposition rate of methylene blue under ultraviolet and daylight illumination and compared to commercial standard catalyst (P25). The results showed enhanced catalysis under UV and visible light for Nb2O5-doped TiO2 as compared to pure TiO2. In addition, 5 mol% Nb2O5-doped TiO2 presented higher photocatalytic activity than P25 under visible light. The enhanced performance was attributed to surface chemistry change associated with a slight shift in the band gap.  相似文献   

18.
BACKGROUND: Semiconductor TiO2 has been investigated extensively due to its chemical stability, nontoxicity and inexpensiveness. However, the wide band gap of anatase TiO2 (about 3.2 eV) only allows it to absorb UV light. TiO2 nanoparticles modified by conditional conjugated polymers show excellent photocatalytic activity under visible light. However, these conjugated polymers are not only expensive, but also difficult to process. Polyvinyl chloride (PVC) was heat‐treated at high temperature to remove HCl and a C?C conjugated chain structure was obtained. When TiO2 nanoparticles were dispersed into the conjugated polymer film derived from PVC, this composites film exhibited high visible light photocatalytic activity. RESULTS: The photocatalytic activity of TiO2/heat‐treated PVC (HTPVC) film was investigated by degrading Rhodamine B (RhB) under visible light irradiation. The photodegradation of RhB follows apparent first‐order kinetics. The rate constants of RhB photodegradation in the presence of the TiO2/HTPVC films with different mass content of TiO2 are 16–56 and 4–14 times that obtained in the presence of the pure HTPVC and TiO2/polymethyl methacrylate (PMMA) composite film, respectively. The TiO2/HTPVC film showed excellent photocatalytic activity and stability after 10 cycles under visible light irradiation. CONCLUSION: TiO2/HTPVC film exhibits high visible light photocatalytic activity and stability. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
An unreported nanometer TiO2 photocatalyst doped with upconversion luminescence agent (40CdF2 · 60BaF2 · 0.8Er2O3) utilizing visible light was prepared. Its photocatalytic activity was checked through the photocatalytic degradation of acid red B as a model compound under visible light irradiation. Results show that the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights, which can be absorbed by nanometer TiO2 particles to produce the electron-cavity pairs. Therefore, the photocatalytic ability of this novel TiO2 photocatalyst has greatly been enhanced compared with undoped and common TiO2 photocatalyst.  相似文献   

20.
ZnS nanoparticles with Ba2+doping have been prepared at room temperature through chemical route, namely the chemical precipitation method. The nanostructures of the prepared nanoparticles have been analyzed using X-ray diffraction (XRD) for phase analysis, Field emission scanning electron microscope (FESEM) for the morphological characterization, UV–Vis–NIR spectrophotometer for determining band gap energy and fluorescence spectroscopy for determining the emission wave length. The sizes of as prepared nanoparticles are found to be in 9–10 nm range. FESEM morphology shows the formation of nanostructure of ZnS samples. The value of optical band gap has been found to be in range 4.10–4.63 eV. Room temperature photoluminescence (PL) spectrum of the undoped sample exhibits emission in the blue region with multiple peaks under UV excitation. On the other hand, the Ba2+ doped ZnS samples exhibit visible light emissions under the same UV excitation wavelength of 310 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号