首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   

2.
The microstructure and mechanical properties of an alumina–glass low temperature co-fired ceramic (LTCC) have been investigated. The microstructure was studied by using optical microscope, scanning electron microscope, energy spectrum analysis and X-ray diffraction. The Young's modulus, hardness, flexure strength and fracture toughness were measured by three-point bending, indentation and nanoindentation tests. The LTCC can be regarded as a particle-reinforced composite with macroscopically isotropic properties: particles mainly composed of synthetic corundum and matrix mainly of corundum and silica. The particles with irregular shape and an average radius of 0.71 μm are homogeneously dispersed in the matrix. The properties of the individual particle and matrix were successfully measured and further used to obtain the effective properties of the composite by micromechanics methods. The existence of rigid particles improves not only the modulus, hardness and strength but also the fracture toughness of LTCC materials.  相似文献   

3.
The mechanical properties and microstructure of alumina-rich magnesium aluminate spinel/tungsten (14 and 22 vol.% W) composites obtained by hot press at 1650 °C under reducing conditions have been investigated. The R-curve for these composites was estimated by the indentation strength method and compared with that of the monolithic spinel obtained under similar conditions. Rising R-curve behavior was specially observed in the composites when tungsten content was higher. Other mechanical properties such as hardness, toughness, Young's modulus and bending strength, were also determined for both (composites and monolithic magnesium aluminate). Higher values of bending strength were found as the metal volume fraction increases in the composite. The metal content dependence of Young's modulus and Vickers hardness follow the rule of mixtures. Mechanical properties and specially toughness are influenced by the metal content and its grain size.  相似文献   

4.
《Ceramics International》2016,42(10):12239-12245
In this paper, unidirectional SiC fiber (SiCf) reinforced geopolymer composites (SiCf/geopolymer) were prepared and effects of fiber contents on the microstructure and mechanical properties of the composites in different directions were investigated. The XRD results showed that addition of SiCf retarded geopolymerization process of geopolymer matrix by weakening the typical amorphous hump. SiCf in all the composites were well infiltrated by geopolymer matrix, but microcracks which were perpendicular to the fiber axial direction were noted in the interface area due to the thermal shrinkage of matrix during the curing process. With the increases in fiber contents, although Young's modulus of the composites increased continuously, flexural strength, fracture toughness and work of fracture increased at first, reached their peak values and then decreased. And when fiber content was 20 vol%, the composites showed the highest flexural strength, fracture toughness and work of fracture, which were 14.2, 15.2 and 81.6 times as high as those of pristine geopolymer, respectively, indicating significant strengthening and toughening effects from SiCf. Meanwhile, SiCf/geopolymer composites failed in different failure modes in the different directions, i.e., tensile failure mode in the x direction (in-plane and perpendicular to the fiber axial direction) and shear failure mode in the z direction (laminate lay-up direction).  相似文献   

5.
Zirconia-toughened alumina composites containing 0–30 vol% of 3Y-TZP were fabricated by sintering at 1600 °C for 2 h in air. The effect of the 3Y-TZP content on the mechanical properties and microstructure of the alumina ceramics was investigated. The fracture toughness and biaxial flexural strength increased as the 3Y-TZP content increased. The Young's modulus decreased with 3Y-TZP content according to the rule of mixture, while the hardness showed the contrary tendency. The Weibull modulus of the Al2O3 with 20 vol% 3Y-TZP composite is higher than that of alumina. The residual hoop compressive stress developed in ZTA ceramic composites probably accounts for the enhancement of strength and fracture toughness, as well as for the higher tendency of crack deflection. No monoclinic phase and strength degradation were found after low temperature degradation (LTD) testing. The excellent LTD resistance can be explained by the increased constraining force on zirconia embedded in alumina matrix.  相似文献   

6.
《Ceramics International》2022,48(5):6808-6818
In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground granulated blast furnace slag (GGBFS). Different percentages of PP and steel fibers are used in geopolymer mortars to find the mechanical properties such as compressive, splitting tensile and flexural strengths were investigated to understand the strength behavior. However, the compressive elastic modulus values were estimated through the proposed equation based on the compressive strength of the fiber reinforced geopolymer composite samples. Moreover, to understand the geopolymeic reaction, microstructural studies, i.e., scanning electron microscopy (SEM), were conducted. The experimental results revealed that the addition of PP fibers up to 2.0% (volume fraction) enhanced the flexural properties of geopolymer mortar samples. The compressive strength of the steel fiber-reinforced geopolymer composite reached a maximum of 2.5% volume fraction, being a 13.26% improvement over the control mix. The flexural toughness index of the PP and steel fiber reinforced composites improved with increasing the fraction. However, steel fiber reinforced geopolymer samples are shown better flexural toughness compared to PP fibers. The SEM analysis of the geopolymer control mix achieved a good degree of geopolymerization and both the fibers yielded a considerable interfacial bonding with the geopolymer paste.  相似文献   

7.
Oxynitride glasses combine a high refractoriness, with Tg typically >850°C, and remarkable mechanical properties in comparison with their parent oxide glasses. Their Young's modulus and fracture toughness reach 170 GPa and 1.4 MPa m.5, respectively. Most reports show good linear relationships between glass property values and nitrogen content. There is a clear linear dependence of Young's modulus and microhardness on fractional glass compactness (atomic packing density). They also have a better resistance to surface damage induced by indentation or scratch loading. The improvements stem from the increase of the atomic network cross-linking—because of three-fold coordinated nitrogen—and of the atomic packing density, despite nitrogen being lighter than oxygen and the Si–N bond being weaker than the Si–O bond. For constant cation composition, viscosity increases by ∼3 orders of magnitude as ∼17 eq.% oxygen is replaced by nitrogen. For rare earth oxynitride glasses with constant N content, viscosity, Young's modulus, Tg, and other properties increase with increasing cation field strength (decreasing ionic radius). Research continues to find lighter, stiffer materials, including glasses, with superior mechanical properties. With higher elastic moduli, hardness, fracture toughness, strength, surface damage resistance, increased high temperature properties, oxynitride glasses offer advantages over their oxide counterparts.  相似文献   

8.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

9.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

10.
Effect of two-step sintering (TSS) on microstructure and mechanical properties of ceria-stabilized zirconia-toughened alumina with added TiO2 (CSZTA–TiO2) was studied. A coprecipitation technique was used to produce the CSZTA–TiO2 powders. The synthesized powders were compacted using a uniaxial hydraulic press and conventionally sintered in air. The phase and microstructure of sintered samples were studied using X-ray diffraction and scanning electron microscopy techniques. Phases were quantified using the Rietveld refinement method. Different TSS schedules were followed to optimize microstructure and mechanical properties. Mechanical properties of the CSZTA-4TiO2 composite were evaluated and found as follows: Vickers's hardness of 1650 ± 9.6 HV10, indentation fracture toughness of 8.45 ± .14 MPa √m, compressive strength of 2088 MPa, and Young's modulus of 158 GPa.  相似文献   

11.
An indentation method is used to study the variations in Young's modulus, hardness and fracture toughness of air plasma‐sprayed thermal barrier coatings at a high temperature. The coatings were exposed to 1100°C during 1700 h. A sudden increase in Young's modulus for the first 600 h was observed, while the hardness increased after 800 h as a consequence of sintering. Conversely, there was a reduction of 25% in fracture toughness after 1700 h, evidencing the thermal barrier coating degradation. The evolution of these mechanical properties was correlated with microstructural changes. After 1700 h, the thermally grown oxide thickness reached 6.8 μm, the volumetric percentage of porosity was reduced from 6.8% to 4.7% and the amount of monoclinic phase increased to 23.4 wt%. These characteristics are closely related to the stress distribution in the top coat, which promotes cracks nucleation and propagation, compromising the coating durability.  相似文献   

12.
Cylindrical and bamboo-like boron nitride nanotubes (BNNTs) have been used to reinforce brittle amorphous borosilicate glass matrix materials prepared by spark plasma sintering. The mechanical properties, such as hardness, Young's modulus, fracture toughness, and scratch resistance of the materials have been investigated. The fracture toughness of the composites showed an improvement of ∼30% compared to the pure amorphous glass. BNNTs pull-out, crack bridging, stretching, and crack deflection toughening mechanisms were observed in the reinforced glass matrix composites. Extensive pull-out of the BNNTs (>400 nm) was observed in the form of the telescopic “sword-in-sheath” mechanism, resulting in poor energy dissipation due to the weak Van der Waals force between the inner walls of the BNNTs. The scratch resistance was significantly improved (∼26%) after the addition of the BNNTs, and the results correspond well with the brittleness index of the materials.  相似文献   

13.
Damage‐free chamfering method for strengthening a glass edge was introduced and its effect on the edge property was discussed in detail. The chamfered surface was evaluated using an optical microscope, a confocal LSM, and a birefringence measurement system. The mechanical properties were characterized by measuring hardness, Young's modulus, and bending strength. The results revealed that the cut edge of 0.55t thin glass sheet containing median cracks and chips was exfoliated uniformly to a thickness of 200 μm, and a smooth edge surface was created (Ra = 0.03 μm). We also reported that the chamfered surface had a compressive stress enabling hardness and Young's modulus increase, and the edge strength improved from 117 to 199 MPa.  相似文献   

14.
Aluminium oxynitride (Alon) exhibits excellent stability, high rigidity and good thermal shock resistance, but it has relatively low strength and poor fracture toughness. The aim of this investigation was to develop a new type of zirconium nitride (ZrN) nano-particulate reinforced Alon composites via a change of ZrO2 nano-particles during sintering. A reduction of porosity and grain size was observed in the composite. With increasing amount of ZrN nano-particles up to 2.7%, the relative density, hardness, Young's modulus, flexural strength, and fracture toughness all increased. When the ZrN nano-particles exceeded 2.7%, while the flexural strength and fracture toughness decreased slightly, the density, hardness and Young's modulus continued to increase. Different toughening mechanisms including crack bridging, crack branching and crack deflection were observed, thus effectively increasing the crack propagation resistance and leading to a considerable improvement in the flexural strength and fracture toughness of the composites.  相似文献   

15.
Unidirectional carbon fiber reinforced geopolymer composite (Cuf/geopolymer) is prepared by a simple ultrasonic-assisted slurry infiltration method, and then heat treated at elevated temperatures. Effects of high-temperature heat treatment on the microstructure and mechanical properties of the composites are studied. Mechanical properties and fracture behavior are correlated with their microstructure evolution including fiber/matrix interface change. When the composites are heat treated in a temperature range from 1100 to 1300 °C, it is found that mechanical properties can be greatly improved. For the composite heat treated at 1100 °C, flexural strength, work of fracture and Young's modulus reach their highest values increasing by 76%, 15% and 75%, respectively, relative to their original state before heat treatment. The property improvement can be attributed to the densified and crystallized matrix, and the enhanced fiber/matrix interface bonding based on the fine-integrity of carbon fibers. In contrast, for composite heat treated at 1400 °C, the mechanical properties lower substantially and it tends to fracture in a very brittle manner owing to the seriously degraded carbon fibers together with matrix melting and crystal phases dissolve.  相似文献   

16.
《Ceramics International》2020,46(12):20027-20037
Properties of fly ash (FA) and metakaolin (MK) based geopolymer/alkali-activated mortar modified with polyvinyl alcohol (PVA) fiber and nano-SiO2, including workability, compressive strength, flexural performance, elastic modulus and fracture property were tested in this study. PVA fiber content varies from 0 to 1.2%. Nano-SiO2 content is 0 and 1%. Adaptive neuro-fuzzy interfacial systems (ANFIS) method was used to establish the artificial intelligence (AI) model to predict the fracture parameters of geopolymer/alkali-activated mortars. The inputs of ANFIS models include PVA fiber content, nano-SiO2 content, compressive strength, flexural strength, elastic modulus, critical crack mouth opening displacement, crack load and peak load. The outputs of ANFIS model include critical effective crack length, initiation fracture toughness, unstable fracture toughness, and fracture energy. Experiment results showed that PVA fiber addition enhanced the mechanical properties especially the compressive strength and fracture performance, but decreased the workability. 0.8%–1.0% was considered as the optimal content of PVA fiber. Addition of 1% nano-SiO2 shows a slight improvement on both workability and mechanical properties of the mortar no matter how much fiber is added. Based on the ANFIS algorithm and 42 sets of experimental data, the trained models were proved to have high accuracy with root mean square error (RMSE) under 0.15, mean absolute error (MAE) under 0.01, and coefficient of determination (R2) over 0.85. The ANFIS model established in this study combined the fracture properties with the basic mechanical properties of geopolymer/alkali-activated composites, which can provide a new method to assess the fracture performance of geopolymer/alkali-activated mortars modified with PVA fiber and nano-SiO2 in the future.  相似文献   

17.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics.  相似文献   

18.
The research was carried out to develop geopolymers mortars and concrete from fly ash and bottom ash and compare the characteristics deriving from either of these products. The mortars were produced by mixing the ashes with sodium silicate and sodium hydroxide as activator solution. After curing and drying, the bulk density, apparent density and porosity, of geopolymer samples were evaluated. The microstructure, phase composition and thermal behavior of geopolymer samples were characterized by scanning electron microscopy, XRD and TGA-DTA analysis respectively. FTIR analysis revealed higher degree of reaction in bottom ash based geopolymer. Mechanical characterization shows, geopolymer processed from fly ash having a compressive strength 61.4 MPa and Young's modulus of 2.9 GPa, whereas bottom ash geopolymer shows a compressive strength up to 55.2 MPa and Young's modulus of 2.8 GPa. The mechanical characterization depicts that bottom ash geopolymers are almost equally viable as fly ash geopolymer. Thermal conductivity analysis reveals that fly ash geopolymer shows lower thermal conductivity of 0.58 W/mK compared to bottom ash geopolymer 0.85 W/mK.  相似文献   

19.
Pressure-assisted infiltration was used to synthesize SiC/Al 6061 composites containing high weight percentages of SiC. A combination of PEG and glass water was used to fabricate SiC preforms and the effect of the presence of glass water on the microstructure and mechanical properties of the preforms was evaluated by performing compression tests on the preforms. Also, the compressive strength and the hardness of the SiC/Al composites were investigated. The results revealed that the glass water improved the compressive strength of the preforms by about five times. The microstructural characterization of the composites showed that the penetration of the aluminum melt into the preforms was completed and almost no porosity could be seen in the microstructures of the composites. Moreover, the composite containing 75 wt% SiC exhibited the highest compressive strength as well as the maximum hardness. The results of the wear tests showed that increasing the SiC content reduces the wear rate so that the Al-75 wt% SiC composite has a lower wear rate and a lower coefficient of friction than those of Al-67 wt% SiC composite. This indicated higher wear resistance in these composites than the Al alloy due to the formation of a tribological layer on the surface of the composites.  相似文献   

20.
Alumina particles incorporated glass matrix composites, which showed good prospect to be used as coating materials for high‐temperature corrosion protection on intermetallics or titanium alloys, were prepared via pressureless sintering. With increasing alumina content, the Young's modulus, fracture strength, Vickers hardness, indentation toughness, softening point, and thermal shock resistance of the composites increased monotonically. A similar increasing trend could be found for the thermal expansion coefficient of the composites, except for an abnormal drop at small amount of incorporation, which closely correlated with the Al3+ dissolution into the glass matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号