首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
提升双电层超级电容器(EDLCs)能量密度的关键在于提高多孔炭电极材料的耐电压特性。然而目前提高多孔炭耐电压特性的难点是既脱除多孔炭的含氧基团、又不破坏多孔炭的层次孔结构。对此,选择镍基催化剂、利用催化剂表面发生的氢溢流现象,实现低温条件下脱除多孔炭的含氧基团,得到低氧含量的多孔炭。与H2气氛下的热还原脱氧过程相比,基于氢溢流现象的脱氧过程除了热解反应和加氢反应,还包括高活性氢原子参与的剧烈加氢反应。此外,考察了基于一级氢溢流和二级氢溢流现象的多孔炭脱氧过程的作用机制。由于镍纳米颗粒和多孔炭之间存在Ni-O-C键和Ni-C键,一级氢溢流抑制了多孔炭含氧基团的脱除。二级氢溢流避免了Ni-C键和Ni-O-C键的形成,解离的高活性氢原子可在厘米级别的长距离范围内扩散,能更有效脱除多孔炭表面的C-O、CO等含氧基团。此外,二级氢溢流脱氧后得到的多孔炭(PC-Ni-655)的碳层结构的有序度提高且孔道结构没有被破坏。当PC-Ni-655应用于EDLCs时,在3.3 V的高电压窗口下表现出较小的自放电现象和良好的循环稳定性(在1 A·g-1循环5 000圈后,容量保持率为87.9%)。  相似文献   

2.
李微微  谢晓峰  王树博 《化工进展》2020,39(z2):168-174
以阳极催化剂(IrO2)、阴极催化剂(Pt/C)含量、阴极Nafion质量分数和阳极Nafion质量分数为考察的因素,进行了四因素三水平的正交试验,以电解槽电解电压在2V时的电流密度为衡量标准,确定了配置催化剂浆料的最优配比为:阳极催化剂IrO2担载量2.0mg/cm2,阴极催化剂Pt担载量1.0mg/cm2,阳极催化剂浆料中Nafion质量分数20%,阴极催化剂浆料中Nafion质量分数25%。使用最优配比配制催化剂后制备膜电极,对该膜电极进行极化曲线测试、产氢量计算及稳定性测试,发现运行80h后,膜电极的电解性能下降,在0.6A/cm2时,电解电压从1.78V升高到2.06V。使用交流阻抗分析稳定性测试前后的各部分电阻变化,发现各部分电阻均有增加。扫描电镜发现测试后阴极催化层与膜发生明显剥离。对稳定性测试期间的循环水进行电感耦合等离子体质谱(ICP-MS)测试,发现长时间运行后,水中Ir和Pt的含量增加。  相似文献   

3.
PEMFC用Pt纳米线阴极催化剂的制备及在电堆中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
采用无模板法制备了用于质子交换膜燃料电池(PEMFC)的碳载铂纳米线(Pt NWs/C)阴极催化剂,使用透射电镜(TEM)和X射线衍射图谱技术(XRD)对催化剂的微观结构和形貌进行了表征。研究结果表明,制备的铂催化剂具有纳米线的结构,平均截面直径为(4.0±0.2)nm,线长为15~25 nm。利用循环伏安(CV)法和线性伏安扫描法(LSV)表征催化剂的电化学活性和氧还原反应(ORR)特性,结果表明制备的Pt NWs/C催化剂电化学特性良好。利用Pt NWs/C和Pt/C作为阴极催化剂制备膜电极(MEA),并进行测试,最大功率密度分别为705.6 mW·cm-2和674.4 mW·cm-2。然后以Pt NWs/C和Pt/C为阴极催化剂组装了18片和20片的电堆,并进行性能测试,电堆的最大功率密度分别为409.2 mW·cm-2和702.7 mW·cm-2,单电池电压差异系数(Cv)分别为16.1%和4.36%,这表明Pt NWs/C作为阴极催化剂在放大后的膜电极组件(MEA)里表现出较好的催化活性,但与商业催化剂相比其性能与均一性还有待提高。该研究可为Pt NWs/C催化剂放大制备提供依据,同时可为后续的基于Pt NWs/C的电堆的耐久性测试和车载应用奠定基础。  相似文献   

4.
硝基苯催化加氢Pt-MoS_2/C催化剂的制备及使用寿命的研究   总被引:1,自引:0,他引:1  
储杨  李广学 《应用化工》2014,(4):677-679
采用浸渍法制备Pt/C和Pt-MoS2/C催化剂,用于催化硝基苯加氢反应。采用BET、压汞仪等测试方法测定新鲜催化剂和重复使用后的催化剂的比表面积和孔容。结果表明,比表面积下降27.3%,微孔孔容下降13.2%,总孔容下降5.8%。催化剂失活的主要原因为有机物覆盖在催化剂表面,造成表面积下降和孔堵塞。负载MoS2可使Pt/C催化剂延缓比表面积下降和孔堵塞,寿命显著提高,可循环使用14次左右。  相似文献   

5.
储杨  李广学 《陕西化工》2014,(4):677-679
采用浸渍法制备Pt/C和Pt-MoS2/C催化剂,用于催化硝基苯加氢反应。采用BET、压汞仪等测试方法测定新鲜催化剂和重复使用后的催化剂的比表面积和孔容。结果表明,比表面积下降27.3%,微孔孔容下降13.2%,总孔容下降5.8%。催化剂失活的主要原因为有机物覆盖在催化剂表面,造成表面积下降和孔堵塞。负载MoS2可使Pt/C催化剂延缓比表面积下降和孔堵塞,寿命显著提高,可循环使用14次左右。  相似文献   

6.
冯占雄  汪云  马强  张创  王诚 《化工进展》2022,41(12):6377-6384
传统的燃料电池催化剂合成方法除了反应过程不可控外,反应时间长,生产的催化剂难以保证一致性且耐久性差。由此,本文开发了一种快速、简单、生产一致性好的连续管道微波制备技术,该技术采用传统的乙二醇还原氯铂酸的方法,以1400℃高温处理的炭黑为碳载体制备合成铂载量为50%(质量分数)的催化剂。制备的 Pt/C-1400催化剂的半波电位超过0.9V。在参考可逆氢电极为1.0~1.5V的高电位范围内经过20000次循环伏安碳载体衰减实验,Pt/C-1400催化剂的电化学活性表面积的保留率可达79%,质量比活性的保留率高达85%,表现出了显著的抗腐蚀性和优异的耐久性,为高耐久性催化剂的生产提供了一条有效可行的途径。  相似文献   

7.
以木质素为原料,采用管式炉反应器通过一步热解-半活化法获得木质素基多孔炭材料(LPC)。采用氮吸附(BET)、扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)对多孔炭材料的物化性质进行分析。在900℃的恒定炭化温度下,CO2体积分数为6%、水蒸气体积分数约为20%时,LPC-C6S20表面具有良好的纳米结构,并且总孔容和比表面积分别达到0.77cm3/g和1497.51m2/g,活化气氛促进了多孔炭材料颗粒趋于均匀和微孔、中孔的形成。LPC样品含有—OH、C—H、C=C、C—O、C=O、CO—C、C—N、C=N等丰富的表面官能团。随着活化剂浓度的变化,这些官能团保持相对稳定。因此,通过该方法获得的样品具有良好的纳米结构,具有较大的孔容、比表面积和表面官能团。  相似文献   

8.
采用液相还原法分别制备了碳纳米管(MWCNT)、活性炭(AC)、碳纳米纤维(CNF)和炭气凝胶(CA)负载质量分数3%的Pt催化剂,并对催化剂的结构和形貌进行了XRD和TEM等表征。以肉桂醛加氢作为探针反应,研究了其催化肉桂醛加氢的活性和产物选择性。结果表明,炭材料的结构对其催化肉桂醛加氢行为具有重要影响,纳米炭材料催化剂(Pt/MWCNT、Pt/CNF)表现出较高的CO选择性加氢行为,而无定形碳催化剂表现为C=C选择性加氢,同时Pt/MWCNT的催化活性最高。  相似文献   

9.
以阳极氧化处理的碳布(ACC) 为导电基体,利用Cu的欠电位沉积(UPD)和Cu与Pt金属前驱体之间的置换反应制备了Pt/碳布(Pt/ACC)电极材料,并对其微观结构和电催化分解水制氢性能进行了表征。结果表明,通过控制Cu的沉积电位可以有效地控制Pt的负载量和其在ACC表面的分散状态。随着沉积电位从0.32到0.15 V vs. RHE的变化,Pt/ACC电极材料中Pt的负载量呈线性增加,在0.5 MH2SO4溶液中的产氢反应结果表明,随着Pt负载量的增加,析氢起始电位逐渐降低,当沉积电位为0.15 V vs. RHE时,Pt在ACC表面的负载量仅为588 μg·cm-2,所得Pt/ACC电极材料起始电位为-0.05 V vs. RHE,且达到10 mA·cm-2电流密度所需的过电位仅为68 mV,tafel斜率为34.2 mV·dec-1,电极的催化产氢活性与块体Pt箔相近。  相似文献   

10.
以PtCl4和PtCl2为活性组分,活性炭为载体,采用浸渍法制备Pt/C催化剂,考察Pt/C催化剂用于乙炔氢氯化制取氯乙烯的催化性能,并采用热重分析、N2等温吸附-脱附和H2-TPR等方法对Pt/C催化剂进行表征。结果表明, 加入少量Pt(Ⅱ)(质量分数20%)有利于提高催化剂的初始活性,但加剧了催化剂失活。而活性组分被还原是催化剂失活的主要原因,反应过程中积炭堵塞微孔结构也是导致催化剂失活的原因。  相似文献   

11.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

12.
选用活性炭为载体成功制备了多孔活性炭载体负载单原子金属铂,并利用XRD、TEM、HAADF-STEM和EXAFS等对其进行表征,确认了所负载金属为高度分散的单原子铂。采用三电极电解池对比研究了商业Pt/C电极和自制铂单原子催化剂的玻碳电极在酸性环境中的电解析氢性能。结果表明,在0.5 mol/L H2SO4电解液中,基于铂单原子催化剂的电极在过电位为50 mV和150 mV时,电化学质量比活性分别为6.86 A/mg和49.81 A/mg,分别是商业Pt/C电极的3倍和5倍。  相似文献   

13.
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种清洁高效的发电技术,其中膜电极是PEMFC的核心部件,膜电极的材料和制备工艺对电池性能的影响明显。为了对电池性能进行优化,针对Pt/C催化剂类型、膜电极热压温度、碳粉导电层疏水特性以及催化层中Nafion质量分数等因素进行了电流-电压实验测试,获得了电池性能的影响规律。实验结果表明:Pt/C催化剂类型、碳粉导电层疏水性以及催化层Nafion质量分数对电池性能有显著影响,当碳粉导电层聚四氟乙烯质量分数为24%,催化层中Nafion质量分数为30%时,电池性能达到最优值。膜电极热压温度对电池性能影响较小,但对导电碳粉层与催化层的粘结力影响显著,过低的温度会导致膜电极出现分层。  相似文献   

14.
以阳极氧化处理的碳布(ACC)为导电基体,利用Cu的欠电位沉积(UPD)和Cu与Pt金属前驱体之间的置换反应制备了Pt/碳布(Pt/ACC)电极材料,对其微观结构进行了表征并考察了其电催化分解水制氢性能。结果表明,通过控制Cu的沉积电位可以有效地控制Pt的负载量和其在ACC表面的分散状态。随着沉积电位在0.32~0.15 V vs.RHE变化,Pt/ACC电极材料中Pt的负载量呈线性增加;在0.5 mol/L H2SO4溶液中的产氢反应结果表明,随着Pt负载量的增加,析氢起始电位逐渐降低,当沉积电位为0.15 V vs.RHE时,Pt在ACC表面的负载量为588μg/cm2,所得Pt/ACC电极材料起始电位为-0.05 V vs.RHE,且达到10 m A/cm2电流密度所需的过电位仅为56 m V,Tafel斜率为34.2 m V/dec,电极的催化产氢活性与块体Pt箔相近。  相似文献   

15.
以多巴胺为碳源和氮源、F127为软模板制备氮掺杂有序介孔碳纳米球(NOMCS),并以其为载体制备Pt催化剂(Pt/NOMCS)。通过TEM、XPS、OEA、Raman和N2吸附等手段对材料进行表征。将制备的Pt/NOMCS用于肉桂醛(CAL)选择性加氢模型反应,并研究其催化性能。结果表明,与商用介孔炭(MC)和活性炭(AC)负载Pt催化剂(Pt/MC和Pt/AC)相比,Pt/NOMCS在CAL选择性加氢中显示出较高的催化活性(反应速率常数k=(0.37±0.02) h-1)和选择性(转化率为90%时的肉桂醇选择性约为75%)。循环实验4次后,Pt/NOMCS显示出较好的可回收性能。  相似文献   

16.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

17.
作为富含含氧官能团的有机大分子,褐煤被认为是制备富氧多孔炭材料的天然前驱体。对褐煤进行酸洗氧化改性进一步增加其氧含量得到酸洗氧化褐煤(OAWSL),以KHCO3为活化剂,在高温下分解并与碳反应生成大量气泡,气泡穿透碳层逸出形成大量孔隙,并鼓泡形成了独特的球状表面,得到了多孔炭球。同时探究了KHCO3添加量对多孔炭结构和作为超级电容器电极材料时电化学性能的影响。研究发现,酸洗氧化褐煤与KHCO3质量比为1∶3时得到的多孔炭球具有最均匀球状结构、最大微孔占有率(90.88%)和最高氧含量(22.17%)。以该多孔炭球为电极材料,在以6 mol/L KOH为电解液的三电极体系中得到了323 F/g的比电容(0.1 A/g),组装的超级电容器最大能量密度为6.17 W·h/kg,在2 A/g电流密度下循环20 000次后电容保持率为96%,库伦效率保持100%,可为褐煤基富氧多孔炭材料的制备提供理论支撑。  相似文献   

18.
以稻壳为原料制备生物炭,利用不同浓度的乙酸锌对稻壳炭改性,制得产物分别命名为RHC和MRHC。通过SEM、BET、XRD对制备的生物炭理化特性进行表征。分析表明,改性炭孔隙结构丰富,比表面积较大,且锌以氧化物颗粒状存在于生物炭表面。将改性前后的稻壳生物炭制成电极,测试其电化学性能。结果表明,与未改性生物炭相比,改性后的炭电极比电容大大提高,电阻显著减小,循环性能和倍率性能均有提升。MRHC-0.3(乙酸锌浓度为0.3 mol/L时的改性生物炭)比表面积为495 m2/g,孔容为0.214 cm3/g,该电极在2 A/g下充放电2000次后,其电容保持率为92.16%。将MRHC-0.3电极用于电吸附Cu2+实验,发现在0.9 V,pH为5时吸附效果最好,吸附量为9.57 mg/g。在0.9 V,pH为5,Cu2+初始质量浓度为50 mg/L时,去除率可达63.82%。  相似文献   

19.
对Pt/C催化剂还原烷基化制备防老剂4030进行了研究,分别考察了未经修饰的Pt/C和Pt-S/C的催化性能。结果表明:Pt/C活性过高导致副反应加剧,Pt-S/C兼具高活性、高选择性和较好的稳定性;较佳的反应条件为反应温度为110℃,反应压力为3.5 MPa,酮胺摩尔比为n(5-甲基-2-已酮)∶n(对苯二胺)=4∶1,Pt-S/C催化剂质量分数为1.25%。反应条件温和,得到的4030产品质量分数稳定在98.5%以上。利用TEM、ICP以及N2低温物理吸附对催化剂进行表征发现,新鲜和使用后催化剂表面Pt分散度较好,使用后催化剂出现Pt流失及比表面积和孔容减少是造成活性劣化的原因。  相似文献   

20.
以水溶性聚磷酸铵为致孔剂,苯乙烯为碳源,制备出分级多孔炭(HPC),然后经水热法制备得到二氧化锰包覆多孔炭复合材料。采用X射线衍射分析、扫描电子显微镜、热重分析和物理吸附等对所得材料表面形貌以及结构性能进行表征;采用循环伏安法、恒流充放电、交流阻抗和循环稳定性测试对其进行电化学性能分析。结果表明,当KMnO_4∶HPC=4∶1时,所得复合材料中二氧化锰的含量为55%时,电容性能最好。在0.2 A/g的电流密度下,1 mol/L Na_2SO_4电解液的三电极体系中测试,该复合材料比电容最高可达到216 F/g,且循环1 000次后,比容量保持81%。复合材料优异的电容性能归功于分级多孔炭发达的孔隙结构和均匀的二氧化锰包覆。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号