首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double perovskite Sr2FeMoO6 was prepared by two ways consisting in sol–gel technique and solid-state reaction method. The resulting powders from gel and mixed oxides precursors showed microstructures consisting of very fine grains (0.5–0.8 μm) and a crystalline perovskite structure. The structural and microstructural properties of the double perovskite Sr2FeMoO6 powders as-prepared and ceramics were compared. Tetragonal Sr2FeMoO6 pellets were prepared from the two powders by spark plasma sintering at: 1000, 1100 and 1200 °C and then annealing at 1200 °C, 2 h in 5%H2/Ar. The pellets presented different magnetic characteristics. The saturation magnetization of the samples prepared by sol–gel is close to those prepared by conventional synthesis method.  相似文献   

2.
《Ceramics International》2016,42(7):8234-8239
The effect of dysprosium incorporation in La0.7Sr0.3MnO3 perovskite manganite on its magnetic properties, magnetocaloric effect and critical behavior was investigated. The temperature dependent magnetization data exhibit a sharp paramagnetic–ferromagnetic transition at TC=307 K, which nature has been identified to be a second-order transition by the scaling laws for magnetocaloric effect. The maximum magnetic entropy change and the relative cooling power are found to be, respectively, 8.314 J/kg K and 187 J/kg for a 5 T magnetic field change without a hysteresis loss, making this material a promising candidate for magnetic refrigeration at room temperature. To study the critical behavior of the paramagnetic–ferromagnetic transition, some related critical exponents (β, γ, and δ) have been also calculated. The values of critical exponents indicate that the present phase transition does not belong to the common transition classes but shows some abnormal variation. We suggest that the induced lattice disordering and magnetic disordering due to Dysprosium incorporation are essential reasons for the presence of a large magnetocaloric effect and of an anomalous ferromagnetic phase transition in the present material  相似文献   

3.
Alumina specimens doped with 1 wt.% of titanium oxide were successfully prepared by three different synthesis routes: Pechini method, coprecipitation and sol–gel processes. This paper describes the phase sequence in each synthesis process and its effect on the final particle size and shape, as well as, on the microstructure of the calcined powders and the sintering behaviour. The intermediate phases to obtain α-alumina were κ-Al2O3, θ-Al2O3 and γ-Al2O3for the Pechini, coprecipitation and sol–gel processes, respectively, as could be detected by FT-IR and XRD. Secondly, the calcined powders were isopressed and sintered at 1625 °C for 4 h. Density measurements, and microstructure were investigated by Archimedes method and TEM/SEM, respectively. The sintering behaviour of the materials is discussed on the basis of the characteristic of the metastable phases obtained by each route. Coprecipitation yielded rounded particles with the smallest size. Sol–gel process produced larger grains with vermicular shapes and Pechini method led to hexagonal corundum crystals.  相似文献   

4.
Trirutile-structure MgTa2O6 ceramics were prepared by aqueous sol–gel method and microwave dielectric properties were investigated. Highly reactive nanosized MgTa2O6 powders were successfully synthesized at 500 °C in oxygen atmosphere with particle sizes of 20–40 nm. The evolution of phase formation was detected by DTA–TG and XRD. Sintering characteristic and microwave dielectric properties of MgTa2O6 ceramics were studied at different temperatures ranging from 1100 to 1300 °C. With the increase of sintering temperature, density, ?r and Q · f values increased and saturated at 1200 °C with excellent microwave properties of ?r  30.1, Q · f  57,300 GHz and τf  29 ppm/°C. The sintering temperature of MgTa2O6 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state method.  相似文献   

5.
La0.67Ca0.33MnO3/BaTiO3 composite films have been grown on Nb-doped SrTiO3 substrates by the sol–gel method. The magnetic and ferroelectric properties in the composite films are investigated. A three-state memory is formed by applying a vertical electric field across the La0.67Ca0.33MnO3/BaTiO3 heterostructure, this behavior is attributed to the polarization-mediated resistive switching effect. In addition, the transport properties of La0.67Ca0.33MnO3 thin film can be modulated by an external magnetic field, a 10.3 K shift of the metal insulator transition temperature is obtained with the change of applied magnetic field from 0 T to 6 T. Consequently, in La0.67Ca0.33MnO3/BaTiO3 heterostructure, the resistance behavior can be modulated by piezoelectric effect, ferroelectric polarization and magnetic field simultaneously.  相似文献   

6.
A technique for densifying ultra high temperature ceramic composites while minimising grain growth is reported. As-purchased ZrB2 powder was treated with a zirconia-carbon sol–gel coating. Carbothermal reduction at 1450 °C produced 100–200 nm crystalline ZrC particles attached on the surface of ZrB2 powders. The densification behaviour of the sol–gel coated powder was compared with both the as-purchased ZrB2 and a compositionally similar ZrB2–ZrC mixture. All three samples were densified by spark plasma sintering (SPS). The ZrB2 reference sample was slow to densify until 1800 °C and was not fully dense even at 2000 °C, while the sol–gel modified ZrB2 powder completed densification by 1800 °C. The process was studied by ram displacement data, gas evolution, SEM, and XRD. The sol–gel coated nanoparticles on the ZrB2 powder played a number of important roles in sintering, facilitating superior densification by carbothermal reduction, nanoparticle coalescence and solid-state diffusion, and controlling grain growth and pore removal by Zener pinning. The sol–gel surface modification is a promising technique to develop ultra-high temperature ceramic composites with high density and minimum grain growth.  相似文献   

7.
《Ceramics International》2015,41(6):7337-7344
This paper reports the structural, magnetic and magnetocaloric properties of La0.7−xEuxSr0.3MnO3 (x=0.1, 0.2 and 0.3) polycrystalline manganites elaborated using the solid-state reaction at high temperatures. The X-ray powder diffraction shows that all the prepared compounds are single phase. La0.6Eu0.1Sr0.3MnO3 is crystallized in the rhombohedral symmetry, whereas a structural transition towards orthorhombic system is observed for x≥0.2. Eu doping was found to induce a decrease of the Curie temperature TC from 343 K (x=0.1) to 272 K (x=0.3). All compounds undergo a large magnetocaloric effect and have consequently potential applications in magnetic refrigeration domain around room temperature.  相似文献   

8.
Pseudobrookite-type Mg5Nb4O15 ceramics were prepared by aqueous sol–gel process and microwave dielectric properties were investigated. Highly reactive nanosized Mg5Nb4O15 powders were successfully synthesized at 600 °C in oxygen atmosphere with particle sizes of 20–40 nm firstly and then phase evolution was detected by DTA-TG and XRD. Sintering characteristics and microwave dielectric properties of Mg5Nb4O15 ceramics were studied at different temperatures ranging from 1200 °C to 1400 °C. With the increase of sintering temperature, density, ?r and Q·f values increased, and then saturated at 1300 °C. Excellent microwave properties of ?r ~11.3, Q·f ~43,300 GHz and τf ~?58 ppm/°C, were obtained finally. The sintering temperature of Mg5Nb4O15 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state methods.  相似文献   

9.
《Ceramics International》2015,41(6):7723-7728
In this work, we report the effect of low amount of cobalt doping at the Mn-site on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 (0≤x≤0.1) powder samples. Our samples, elaborated using the solid–solid reaction method at high temperature, are single phase and crystallize in the orthorhombic system with Pnma space group. While the parent compound Pr0.7Ca0.3MnO3 exhibits a charge order state at low temperature, the substituted samples with low amount of cobalt exhibit a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature TC increases with Co content from 105 K for x=0 to 116 K for x=0.1. The maximum values of the magnetic entropy change |ΔSMmax| are found to be 0.8 J/kg K, 2.2 J/kg K, 3.1 J/kg K and 3.2 J/kg K in a magnetic field change of 5 T for x=0, 0.02, 0.05 and 0.1 respectively. The maximum value of the relative cooling power RCP is found to be 378.2 J/kg in the Pr0.7Ca0.3Mn0.95Co0.05O3 at 5 T. This value of RCP is about 92% of that obtained in gadolinium metal, known as one of the most important materials for magnetic refrigeration, at the same magnetic field change of 5 T.  相似文献   

10.
The microstructure and electrical properties of ternary system ZnO–0.5 mol% V2O5–MnO2 ceramics sintered were investigated in accordance with MnO2 content by sintering at 900 °C. For all samples, the microstructure of the ternary system ZnO–V2O5–MnO2 ceramics consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the binary system ZnO–V2O5 ceramics was found to restrict the abnormal grain growth of ZnO. The breakdown field in the EJ characteristics increased from 175 to 992 V/cm with the increase of MnO2 content. The incorporation of MnO2 improved non-ohmic properties by increasing non-ohmic coefficient. The highest non-ohmic coefficient (27.2) in the ternary system ZnO–0.5 mol% V2O5–MnO2 was obtained for MnO2 content of 2.0 mol%.  相似文献   

11.
(Na1/2Bi1/2)TiO3 doped in situ with 11 mol% BaTiO3 (NBT–BT0.11) powders were synthesized by a sol–gel method, and the electrical properties of the resulting ceramics were investigated. The powders consisting of uniform and fine preliminary particles of about 50 nm were prepared by calcining the gel precursor at 700 °C. (Na1/2Bi1/2)0.89Ba0.11TiO3 ceramics, sintered at temperatures up to 1150 °C have a rhombohedral symmetry, while the ceramic sintered at 1200 °C exhibits a tetragonal crystalline structure. The ceramics show high dielectric constant (?r  5456), dielectric loss of 0.02, depolarization temperature Td  110 °C and temperature corresponding to the maximum value of dielectric constant Tm  262 °C. The dielectric constant (?33) and the piezoelectric constant (d33) attain the maximum values of 924 and 13 pC/N, respectively, while the electromechanical coupling factor (kp) value is 0.035. The NBT–BT0.11 ceramics derived from sol–gel present high mechanical quality factor (Qm  860). The dielectric and piezoelectric properties values of NBT–BT0.11 ceramics derived from sol–gel are smaller than those of samples produced by the conventional solid state reaction method, due to the grains size and oxygen vacancies that generate dipolar defects.  相似文献   

12.
《Ceramics International》2015,41(4):5821-5829
We report improvement in the magnetocaloric properties of Ce-doped lanthanum manganites. Polycrystalline La0.7−xCexSr0.30MnO3 (0≤x≥0.3) samples were prepared using the conventional solid-state reaction method with phase purity and structure confirmed using X-ray diffraction. Temperature dependent magnetization measurements and Arrott analysis reveal second order ferromagnetic transition in parent sample and as well as in doped sample with Curie temperature decreasing progressively with increasing Ce-concentration from ~370 K for x=0.0 to 310 K for x=0.30. Magnetic entropy change (ΔSM) was calculated by applying the thermodynamic Maxwell equation to a series of isothermal field dependent magnetization curves. A large ΔSM associated with the ferromagnetic–paramagnetic transition in La0.7−xCexSr0.30MnO3 samples has been observed. The value of ΔSM was found to increase with Ce-doping up to x=0.15 and the highest value of 2.12 J kg−1 K−1 (at ΔH=2 T) was observed for La0.55Ce0.15Sr0.30MnO3 sample near the Curie temperature of 356 K. Also, improved relative cooling power of ~122 J kg−1 was observed for the same sample. Due to the large magnetic entropy change and high Curie temperature, the La0.55Ce0.15Sr0.30MnO3 sample is suggested to be used as potential magnetic refrigerants for magnetic refrigeration technology above room temperature.  相似文献   

13.
《Ceramics International》2016,42(5):6136-6144
In the present work, α-Fe2O3 nanoparticles were successfully synthesized by Pechini sol–gel (PSG) method following annealing at 550 °C. The morphology and microstructure of the prepared α-Fe2O3 nanoparticles were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman analysis. The electrical and sensing properties were also investigated. The α-Fe2O3 based sensor showed good sensitivity and selectivity towards ethanol at the optimal temperature of 225 °C. Moreover, the sensor displayed good electrical and sensing stability. These results suggest the potential applications of α-Fe2O3 synthesized by Pechini sol–gel method as a sensor material for ethanol detection.  相似文献   

14.
Lead iron niobate Pb(Fe0.5Nb0.5)O3 (PFN) precursors were prepared using sol–gel synthesis by mixing acetates Pb and Fe with Nb-ethylene glycol–tartarate (Pechini) complex at 80 °C and calcination of gels at 600 °C. Single pyrochlore phase with structure close to Pb3Nb4O13 was formed in stoichiometric precursor and Pb3Nb4O13 with small amount of perovskite phase Pb(Fe0.5Nb0.5)O3 in nonstoichiometric precursor prepared with the excess of Pb in molar ratio (Pb:Fe:Nb = 1.2:0.5:0.5). Average particle sizes of PFN calcined powders were ~120 nm. The metastable pyrochlore phase was partially decomposed to perovskite phase at sintering temperature of 1150 °C for 2, 4 and 6 h. Excess of Pb caused increasing of the density (7.4 g/cm3) and content of the perovskite phase (~53 vol.%) in ceramics sintered for 4 h. In microstructures of PFN ceramics sintered at 1150 °C for different times, the bimodal grain size distribution was observed with small spherical grains of perovskite phase and larger octahedral grains, which represent the pyrochlore phase. Results of EDX analysis confirm that complex types of pyrochlore phases that differ in iron content were present in ceramics.  相似文献   

15.
《Ceramics International》2017,43(9):7351-7357
We report magnetic and magnetocaloric properties of La0.8−xBixSr0.08(Ca0.55Ba0.45)0.12MnO3 (x=0.0, 0.1 and 0.3) perovskite manganites. Polycrystalline samples have been synthesized in air by the sol gel method at a sintering temperature of 1150 °C. Powder X-ray diffraction data show that samples are phase pure and their cell parameters slightly decrease with increase in Bi content. Scanning electron micrographs show that the average particle size increases with increase in Bi content. The temperature dependent magnetization measurements show that the Curie temperatures decrease from 315 K (x=0.0) to 140 K (x=0.3) with increase in Bi content. The isothermal magnetization data is used to estimate the magnetic entropy changes (−ΔSM) and their calculated values are 1.12 J kg−1 K−1, 1.96 J kg−1 K−1 and 1.62 J kg−1 K−1 for x=0.0, 0.1 and 0.3 samples respectively under an applied magnetic field of 2.0 T. The corresponding values of relative cooling power (RCP) are 90 J kg−1, 180 J kg−1, 136 J kg−1 for x=0.0, 0.1 and 0.3 samples respectively. These results of magnetocaloric effect in our samples suggest that they are promising materials for the magnetic refrigeration applications.  相似文献   

16.
《Ceramics International》2017,43(10):7660-7662
In this work, we studied in detail the magnetocaloric properties of La0.67Pb0.33MnO3 according to the phenomenological model. Based on this model, a large magnetic entropy change has been discovered in La0.67Pb0.33MnO3 when subjected to low magnetic field variation of 0.05 T. Furthermore, the results of Co doping clearly indicate that the magnetocaloric effect in this system is tunable. Therefore, this tuning makes this ceramic series potentially practical for the improvement of multimaterial layered magnetocaloric regenerators.  相似文献   

17.
《Ceramics International》2015,41(4):5492-5497
The Aurivillius-type bismuth layer-structured ferroelectrics (BLSFs) sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15, NLBT) polycrystalline ceramics with 0.0–0.4 wt% MnO2 were synthesized using conventional solid-state processing. Phase analyses were performed by X-ray powder diffraction (XRPD), and the microstructural morphology was assessed by scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the manganese-modified NLBT ceramics were investigated in detail. The results show that manganese is very effective in promoting the piezoelectric activities of NLBT ceramics, and the reasons for piezoelectric activities enhancement by manganese modification are explained. The NLBT ceramics modified with 0.2 wt% MnO2 (NLBT-Mn2) possess good piezoelectric properties, with a piezoelectric coefficient d33 of 28 pC/N. This value is the highest value among the modified NLBT-based piezoelectric ceramics examined. The temperature-dependent dielectric spectra show that the Curie temperature Tc of the manganese-modified NLBT ceramics is slightly higher than that of the pure NLBT ceramics. Thermal annealing analysis revealed that the manganese-modified NLBT ceramics possess good thermal stabilities up to 500 °C. These results demonstrate that the manganese-modified NLBT ceramics are promising materials for high temperature piezoelectric applications.  相似文献   

18.
《Ceramics International》2016,42(5):6005-6009
Li2MnO3 ceramics co-doped with 2 wt% LiF and x wt% TiO2 (x=0, 3, 5, 7, 10) were prepared by solid-state reaction for low-temperature co-fired ceramics (LTCC) applications. The sintering temperatures of Li2MnO3 ceramics were successfully lowered to 925°C due to the formation of a LiF liquid phase. Their temperature stability was improved by doping with TiO2. A typical Li2MnO3-2 wt% LiF-5 wt% TiO2 sample with well-densified microstructures displayed optimum dielectric properties (εr=13.8, Q×f= 23,270 GHz, τf=1.2 ppm/°C). Such sample was compatible with Ag electrodes, which suggests suitability of the developed material for LTCC applications in wireless communication systems.  相似文献   

19.
Nano-Cordierite powders used for high frequency chip inductors (MLCIs) were prepared by sol–emulsion–gel method. Effects of precursor concentration and [H2O]/[Si] molar ratio on this material were studied. The sol–emulsion–gel processing of Mg2Al4Si5O18 as well as its dielectric property were investigated. Owing to the better packing efficiency and therefore higher surface energy of the freestanding nano-powder, the pressed pellets made by cordierite powder showed 98.6% theoretical density at 900 °C for 2 h. The additive Bi2O3 was utilized to promote the crystallization or transformation to α-cordierite and sintering. The sol–emulsion–gel-derived cordierite ceramics have low dielectric constant (ε=3.0~4.0; 18 GHz) and low dielectric loss (tgδ<0.001; 18 GHz) and can be co-fired with high conductivity metals such as Au, Ag/Pd internal electrode at low temperature (900 °C), suggesting that it was an ideal dielectric material for high-frequency multilayer chip inductors.  相似文献   

20.
《Ceramics International》2016,42(4):4911-4917
Three dimensional porous Li1.6Al0.6MnO4 (LAMO) nanofibers were successfully prepared for the first time, via a facile electrospinning homogenous solution of lithium acetate, manganese nitrate and aluminum nitrate in polyvinyl alcohol and polyvinylpyrolidone solution followed by calcination of the as-spun nanofibers at 500, 700 and 900 °C. The processing parameters were; voltage 25 kV, flow rate 0.7 ml/h, the distance between the needle and collector 10 cm and the inner diameter of the needle 0.499 mm. X-ray diffraction of the samples prepared by using electrospinning and sol–gel revealed that Li1.6Al0.6MnO4 phase was formed at; 500 °C and 700 °C, respectively. Field Emission Scanning Electron Microscopy revealed that the electrospun nanofibers at 700 °C were fabricated with diameter 250 nm, and the single fiber composed of 30 nm LAMO grains. On the other hand, samples calcined at 700 °C, prepared by sol–gel, show coalescence of the fine grains of LAMO in the form of microspheres with an average diameter of 1 µm and each microsphere is composed of fine crystals of LAMO. The characteristics of the prepared spinel make them promising for use in lithium adsorption from polluted effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号