首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bismuth ferrite thin films were prepared via sol–gel spin-coating method and the effects of annealing temperature on microstructure, optical, ferroelectric and photovoltaic properties have been investigated. The results show that the bismuth ferrite thin films annealed at 550 °C is single phase and the grain size increases with the rise of annealing temperature. The band gap of bismuth ferrite thin films annealed at 550–650 °C is between 2.306 eV and 2.453 eV. With the rise of the annealing temperature, the remnant polarization gradually decreases and the coercive electric field increases. The short circuit photocurrent density decreases with the rise of annealing temperature, and the open circuit photovoltage and the power conversion efficiency of bismuth ferrite thin films annealed at 550 °C are higher than the thin films annealed at higher temperature.  相似文献   

2.
A simple electrochemical process has been demonstrated to grow highly oriented γ-CuI thin films on indium doped tin oxide (ITO) glass through reducing Cu(II)-ethylene diamine tetraacetic acid disodium (EDTA) complex in aqueous solutions at or near room temperature. The CuI thin films grow preferential orientation along the 〈1 1 1〉 crystal axis from the X-ray diffraction patterns. The oriented growth of the CuI thin films is not affected by the solution pH and the applied potentials. The possible mechanism of the oriented growth is discussed, and the surface energy of different crystal planes of CuI crystal is believed to play an important role to control the oriented growth of the CuI thin films. The bandgap of the electrodeposited CuI films is 2.98 eV and the photoluminescence spectra of the CuI thin films exhibit relative intense exciton band luminescence at room temperature.  相似文献   

3.
Recently, an aqueous particulate sol–gel process using metallic chloride precursors was introduced to synthesize zirconium titanate. In this paper, the effect of annealing temperature on the structural and corrosion protection characteristics of spin-coated thin films obtained from this sol–gel system was investigated. Based on scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and spectroscopic reflectometry studies, it was found that the flatness and thickness of the thin films were decreased by increasing the annealing temperature. Also, the corrosion protection of stainless steel AISI 316L provided by the prepared coatings, as analyzed by electrochemical potentiodynamic polarization experiments in a simulated body fluid, was improved in this order: 500 °C-annealed sample<900 °C-annealed sample<700 °C-annealed sample, attributed to a compromise between the defect density and the adhesion of the films to the substrate.  相似文献   

4.
-Radiation significantly affects both the initial structure and the thermal properties of PAN fibres. The following are probably the most important results of radiation exposure: the temperature of the beginning of cyclization decreases; the exothermic nature of cyclization decreases so that the weight losses in the region of the m.p. decrease, indicating destructive processes in the polymer chain; when irradiated samples are heated, intermolecular cross-links form with the participation of oxygen; the duration of oxidation of the fibres before a given density level is attained is reduced significantly.St. Petersburg University of Design and Technology. Translated from Khimicheskie Volokna, No. 3, pp. 18–21, May–June, 1995.  相似文献   

5.
In this work, we studied optical properties of pure and Nb-doped TiO2 synthesized using a sol–gel method and deposited as thin films by spin-coating followed by annealing in air at 500 °C for 1 h. The surface elemental composition was derived from X-ray photoelectron spectra, while structure and surface morphology were investigated using X-ray diffraction and atomic force/scanning electron microscopy. Finally, the optical properties were investigated by means of UV–vis spectrophotometry and spectroscopic ellipsometry.The Nb content was determined from XPS measurements to vary between 1.8 and 4.3 at%. The XRD patterns of the deposited thin films, with a maximum thickness of about 56 nm, showed no diffraction peaks. As proven both by microscopy and spectroscopic ellipsometry studies doping TiO2 with Nb modified the surface morphology of the samples; the grain size is increasing while the surface roughness decreases with the increase in Nb content. This is accompanied by a decrease in the refractive index and an increase of the extinction coefficient.  相似文献   

6.
《Ceramics International》2016,42(6):7328-7335
Phase-pure BiFeO3 powders were synthesized by sol–gel technique. Based on these powders, high-density BiFeO3 ceramics were prepared by spark plasma sintering (SPS) at 700 °C along with annealing for 2 and 4 h, respectively, at 650 °C under atmospheres of air and oxygen. X-ray diffraction analysis revealed that the 4 h-oxygen-annealed sample contained a single rhombohedral perovskite phase while the samples annealed in the other conditions contained small quantities of impurity phases besides the rhombohedral perovskite phase. The relative density of the 4 h-oxygen-annealed sample was about 96%, being apparently higher than that of the other samples. In comparison with the 4 h-air-annealed sample, the dielectric constant of the 4 h-oxygen-annealed sample was relatively higher. The activation energy for electrical conduction was about 1.17 eV for the 4 h-oxygen-annealed sample while it was about 0.98 eV for the 4 h-air-annealed sample, showing that the former would have a lower room-temperature conductivity (~2.6×10−14 S cm−1) than the latter (~2.1×10−13 S cm−1). It is therefore anticipated that the oxygen-annealed sample could possess better ferroelectric properties as compared to the air-annealed sample.  相似文献   

7.
In this work, BaxSr1?xTiO3 sol–gel thin films (x = 0.7, 0.5 and 0.3) deposited on Pt/Si substrate and post-annealed at different temperatures have been investigated. A systematic study of the structure, microstructure and dielectric properties has been achieved for each composition. To our knowledge, for the first time, a systematic effect of post-deposition annealing temperature and composition is reported. For each Ba/Sr ratio, higher annealing temperature leads to crystallinity improvement and to grain growth. A shift of the ferroelectric to paraelectric transition toward the bulk Curie temperature with the increase of the annealing temperature is shown. These results are correlated with the increase of the permittivity, tunability and dielectric losses measured on MIM capacitors at low frequency. Moreover, the high frequency results, between 800 MHz and 30 GHz, are in very good agreement with low frequency measurements, and show a huge tunability up to 80% under 600 kV/cm.  相似文献   

8.
Au–ZnO nanowire films have been synthesized by chemical routes, electrochemical deposition (ECD) and chemical bath deposition (CBD) techniques, on zinc foil followed by annealing in air at 400 °C. X-ray diffraction patterns reveal formation of the ZnO wurtzite structure along with binary phases Au3Zn and AuZn3. Scanning electron microscopy shows the presence of ZnO nanowires having several micrometers in length and less than 120 nm in diameter synthesized by ECD and in the range of 70–400 nm using the CBD technique. During the annealing process, different surface morphologies originating from different catalytic effects of Au atoms/layers were observed. In addition, the effect of synthesis routes on crystalline quality and optical properties were studied by Raman and photoluminescence spectrometers indicating varying concentration of defects on the films. The Raman results indicate that Au–ZnO nanowire film prepared by chemical bath deposition route had better crystalline quality.  相似文献   

9.
《Ceramics International》2016,42(3):3930-3937
Room-temperature multiferroic 0.7BiFeO3–0.3Bi0.5Na0.5TiO3 solid solution ceramics have been prepared by the sol–gel method. We have discussed the annealing temperature dependence of the multiferroic properties. The samples are annealed at 1023, 1123, 1223 and 1323 K for 3 h, respectively. X-ray diffraction patterns identify that all samples are pure. Scanning electron micrographs present the increasing grain size with higher annealing temperature. Magnetic, ferroelectric and dielectric properties are enhanced obviously with the increase in annealing temperature. The coexistence of ferroelectric and ferromagnetic properties is also proved at room temperature. In addition, it reveals that the optimal annealing temperature accompanied with favorable multiferroic properties of 0.7BiFeO3–0.3Bi0.5Na0.5TiO3 solid solution ceramics is near 1223 K.  相似文献   

10.
《Ceramics International》2016,42(11):13268-13272
The influence of pulse plating parameters on the microstructure, microhardness, and properties of the Ni–TiN thin films was investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), X–ray diffraction (XRD), scanning electron microscopy (SEM), and corrosion and wear tests. The results indicated the Ni–TiN thin films prepared via electrodeposition at 4 A/dm2 current density to show an optimum microhardness and TiN content values of 984.7 HV and 8.69 wt%, respectively. The average grain sizes of Ni and TiN in the films obtained at 200 Hz were 127.8 and 48.5 nm, respectively. Numerous large pores can be noticed in the films prepared at pulse frequencies of 200 Hz and 500 Hz, whereas only a few small pits are visible on the surface of the Ni–TiN thin films deposited at 800 Hz. The films prepared at 20% duty cycle experienced the least weight loss.  相似文献   

11.
In this work, the influence of annealing temperature on the ferroelectric electron emission behaviors of 1.3-μm-thick sol–gel PbZr0.52Ti0.48O3 (PZT) thin film emitters was investigated. The results revealed that the PZT films were crack-free in perovskite structure with columnar-like grains. Increasing annealing temperature led to the growth of the grains with improved ferroelectric and dielectric properties. The remnant polarization increased slightly from 35.3 to 39.6 μC/cm2 and the coercive field decreased from the 56.4 to 54.6 kV/cm with increasing annealing temperature from 600 to 700 °C. The PZT film emitters exhibited remarkable ferroelectric electron emission behaviors at the threshold voltage above 95 V. The film annealed at 700 °C showed a relatively lower threshold voltage and higher emission current, which is related to the improved ferroelectric and dielectric properties at higher annealing temperature. The highest emission current achieved in this work was around 25 mA at the trigger voltage of 160 V.  相似文献   

12.
Not only the tensile characteristics but also the character of the P(ε) and ε(T)curves change in γ-irradiation of PCA fibres. Irradiation in a forevacuum causes fewer changes in the structure and mechanical properties of PCA fibres than irradiation in air. In irradiation of PCA fibres in air, a shrinkage stage is detected, replaced by a stage of spontaneous lengthening as the absorbed dose increases. In the case of irradiation in a forevacuum (in the dose range studied), only the shrinkage stage is observed. The shrinkage stage is characterized by slight disordering of the structure of the polymer and an increase in the angle of disorientation of crystallites. Recrystallization processes activated by the radiation and to a great degree due to an increase in the molecular mobility because of fragmentation of transfer chains take place in the spontaneous lengthening stage. Translated from Khimicheskie Volokna, No. 2, pp. 47–50, March–April, 1998.  相似文献   

13.
《Ceramics International》2015,41(8):9383-9391
This study adopted the sol–gel method to synthesize p-type semiconductor CuCrO2 films and analyzed the effects of an annealing treatment, under a controlled argon atmosphere by changing the temperature and time, on the phase transformation, micro- and nano-structure, composition, and semiconductor properties of thin films. In the Cu–Cr–O phase transformation system, CuO, Cr2O3, and CuCr2O4 were the intermediate phases of the reaction for forming CuCrO2: in the metastable state reaction process, the composite phases changed into a single phase, CuCrO2; in the stable-state reaction process of CuCrO2, carbon elements of precursors were released and eliminated; and finally the optoelectronic properties of the CuCrO2 thin film were adjusted and changed. The CuCrO2 thin film possessed cell- and polygon-like shaped microstructures. The carbon content in the CuCrO2 film decreased, so the copper, chromium, and oxygen contents increased accordingly. The optical band gap of CuCrO2 thin film increased from 2.81 eV to 3.05 eV, while the resistivity decreased. The nanoscale crystal was identified which also of the delafossite CuCrO2 structure. Using the sol–gel method to prepare the CuCrO2 thin films, an appropriate annealing temperature and time were helpful in forming the single-phase CuCrO2; the decrease of precursor elements in the thin film could enhance the band gap and the conductivity of the material.  相似文献   

14.
The modular satellite concept iBOSS (intelligent Building Blocks for On-Orbit Satellite Servicing and Assembly) enables on-orbit servicing and reconfiguration of satellite systems and has the potential to be a game changer in the space industry. Such building blocks have to withstand all environmental loads in space, e.g.: radiation, vacuum and thermal cycling.The present paper investigates the mechanical properties of the two component epoxy adhesive 3M SW9323 under the environmental effect of radiation. This adhesive is part of the building block's primary structure. Furthermore, adhesive bonding is the sole joining technique used in the whole structure. It is therefore critical to know the influence of ionizing radiation on its load-carrying capacity. For this purpose bulk specimens were manufactured and exposed to γ-radiation, generated by a 60Co source. Four different doses were achieved by varying the distance to the source and irradiation time. Afterwards the specimen were tested under tensile loading. Using the digital image correlation technique properties like elastic modulus, shear modulus, tensile strength and elongation at break were determined.The results show that the mechanical properties of the bulk specimen of 3M SW9323 are not influenced by γ-radiation up to a dose of 17.6 kGy. This is explained by the phenomena of crosslinking and chain scission which occur simultaneously and cancel each other out. In addition, Fourier-transform infrared spectroscopy (FTIR) was carried out to investigate if one mechanism is predominant. A slight shift in the spectra indicates the supremacy of chain scission.  相似文献   

15.
《Ceramics International》2017,43(2):2288-2290
In this study we report the synthesis of nano-sized CoCrxFe2−xO4 (0<x<1) by solution self combustion method. Citric acid is used as fuel. Self combustion method provided excellent control over the composition. Upon increased Cr substitution, saturation magnetization, remnant magnetization, and coercivity were all found to decrease. The compositional influence Cr upon the magnetic properties and the structural parameters is found to be nearly linear. The crystallite size of the nanoparticles decreases linearly from 17 nm to 5 nm with increase in Cr content. The increase in Cr content decreases the magnetic ordering of material and converts into a soft magnetic material.  相似文献   

16.
Pure polycrystalline Bi1−xSmxFeO3 (BSFO) (x=0–0.12) thin films were successfully prepared on FTO/glass substrates by the sol–gel method. The influence of Sm doping on the structure, dielectric, leakage current, ferroelectric and ferromagnetic properties of the BSFO films was investigated. X-ray diffraction analysis and FE-SEM images both reveal a gradual rhombohedra to pseudo-tetragonal phase transition with the increase of Sm dopant content. On one hand, a proper amount of Sm doping can decrease the leakage current densities of the BSFO thin films. On the other hand, excess Sm substitution for Bi will lead to multiphase coexistence in the film, the lattice inhomogeneity results in more defects in the film, which can increase the leakage current density. The result shows that defects in the complexes lead to electric domain back-switching in the BSFOx=0.06 thin film, resulting in a decreased dielectric constant, leakage current and remanent polarization. The BSFOx=0.09 thin film is promising in practical application because of its highest dielectric constant, remanent polarization and remanent magnetization of 203–185, 70 μC/cm2 and 1.31 emu/cm3, respectively.  相似文献   

17.
《Ceramics International》2016,42(3):4556-4561
Eu-doped Ca-α-SiAlON phosphors, featuring high phase purity, uniform particle size of 3–5 μm and good luminescent properties with a yellow emission spectrum under blue light excitation, were prepared by a highly efficient combustion synthesis (CS) method. A certain amount of NaCl was applied as an innovative additive to regulate and control the properties of synthesized phosphors. Further, the effects of NaCl additive in the CS system were systematically investigated and rational proposed. It was found that the effect on accelerating nitridation and crystallization played a dominant role in the reaction as the content of NaCl was less than 6 wt%, while the effect of absorbing reaction heat through vaporization was dominant with the further-increased content of NaCl. The intensity of the emission spectrum for the sample doped with 6 wt% of NaCl was remarkably enhanced, nearly 40% more than the sample which was not NaCl-doped. Moreover, a continuous blue-shift phenomenon in emission spectra was observed with the increased content of NaCl.  相似文献   

18.
Zirconium titanate multilayer thin films were prepared by an aqueous particulate sol–gel process followed by spin coating. The obtained structures were studied by transmission electron microscope, scanning electron microscope, atomic force microscope, and spectroscopic reflection analyses. According to the results, sound thin films up to three layers were developed, accompanied by an increase in thickness and roughness by increasing the number of the layers. It was also found that the coatings consist of globular nanoparticles with an average diameter of 50 nm. Considering the contribution of roughness to biological responses, the optimization of the surface characteristics to meet an optimal performance seems to be a challenging issue, which demands future studies.  相似文献   

19.
The Pd content dependence of the crystallization process of Ti–Ni–(19.1–35.3)Pd (at. %) thin films fabricated by a sputter-deposition method was investigated. Ti–Ni–(19.1–26.1)Pd (at. %) as-deposited thin films were found to be amorphous, whereas Ti–Ni–(29.1–35.3)Pd (at. %) thin films were crystalline in the as-deposited condition. Both the crystallization temperature and activation energy for the crystallization of the amorphous thin films decrease with increasing Pd content. The shape memory effect was confirmed in the in situ crystallized thin film. The finer grain size in the in situ crystallized thin film results in a higher critical stress for slip and a smaller recovery strain when compared with the thin film crystallized by post annealing.  相似文献   

20.
CdSe x Te1–x thin films with 0 < x < 1 were deposited on titanium and conducting glass substrates by pulse electrodeposition using microprocessor control. Formation of the solid solution takes place for values of x(0 < x < 1). The films were characterized by X-ray diffraction. While the as-deposited films are cubic in nature, those annealed at 475 °C in air indicate hexagonal structure and the lattice parameters increase with increasing value of x. From the optical absorption measurements the band gap of the material was calculated. The value of the band gap varies from 1.42 to 1.70 eV as x varies from 0 to 1. The photoelectrochemical (PEC) characteristics were obtained for all compositions of CdSe x Te1–x (x = 0–1). The output parameters for CdSe0.66Te0.34 with 9% duty cycle at an intensity of 80 mW cm–2 using 1 M polysulphide as the redox electrolyte, are V OC of 398 mV, J SC of 5.59 mA cm–2, ff of 0.45, of 4.73%, R s of 13 , R sh of 1.50 k. The output parameters were found to increase with 60 ms pulse reversal. After photoetching for 40 s, a V OC of 481 mV, J SC of 16.00 mA cm–2, ff of 0.57, of 5.46%, R s of 6 , R sh of 2.16 k were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号