首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is difficult to obtain nanocrystalline ceramic bulks due to its high surface activity at high temperatures. In the study, in order to achieve both high density and ultrafine morphology, the plastic deformation was induced by an ultrahigh pressure at a deliberately selected temperature, which was much lower than the threshold temperature for rapid grain growth. According to the ultra-high pressure route, nanocrystalline 3YSZ ceramics without grain growth were fully densified at 900?°C under 1.5?GPa. Both direct microstructural observations and calculation results proved that the plastic deformation including high temperature yield and sliding played a dominant role in densification during the sintering process.  相似文献   

2.
Grain coarsening normally occurs at the final stage of sintering, resulting in trapped pores within grains, which deteriorates the density and the performance of ceramics, especially for ultra-high temperature ceramics (UHTCs). Here, we propose to sinter this class of ceramics in a specific temperature range and coupled with a relatively high pressure. The retarded grain boundary migration and pressure-enhanced diffusion ensure the proceeding of densification even at final stage. A highly dense TaC ceramic (98.6 %) with the average grain size of 1.48 μm was prepared under 250 MPa via high pressure spark plasma sintering using a Cf/C die at 1850 °C. It was suggested that the final-stage densification is mainly attributed to grain boundary plastic deformation-involved mechanisms. Compared to the usual sintering route using a high temperature (>2000 °C) and normal pressure (<100 MPa), this work provides a useful strategy to acquire highly dense and fine-grained UHTCs.  相似文献   

3.
The effect of niobium doping on the densification and grain growth of nano-sized α-Al2O3 powders during sintering has been investigated. The dopant concentration added ranged from 0.1 to 0.5 mol%. It was observed that addition of niobium oxide could improve the densification of the pure alumina with a lower sintering temperature, a shorter sintering time. The effect is strengthened by increasing the amount of dopant. It also demonstrated that niobium dopant significantly promotes the grain growth of alumina during sintering and the grain size of alumina increases with increasing the amount of dopant in the added range.  相似文献   

4.
《Ceramics International》2016,42(12):13996-14005
The densification and grain growth of yttrium iron garnet (YIG) were systematically studied to produce highly densified YIG via conventional solid-state route (CSSR). The percentage of purity and structure of YIG was confirmed by XRD characterization. SEM micrographs revealed that with increasing sintering temperature and time, the grain size and the average pores radius (Rp) increased, while the number of pores per volumes (Nv) decreased. The maximum material density obtained using Archimedes principle was 97.9% of that of theoretical density (ρtheory). It required approximately 132.55 kJ/mol of energy to produce dense YIG sintered for 6 h at 1420 °C. However, beyond this temperature, a new phase that confirmed the presence of YFe2O4-δ phase was found through EDX analysis along the grain boundaries. This occurrence lowered the grain boundary mobility thereby resulting in slight change in density. Therefore, the results suggested that a highly densified YIG (ρtheory of ≈98%) could be successfully obtained when YIG is sintered at 1420 °C for 6 h.  相似文献   

5.
In this article, the effect of dwell time (2–48?h) during isothermal sintering at 1520?°C on the grain size, density and crystal structure of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 is demonstrated. All ceramics exhibited the phase transition from orthorhombic to mixed orthorhombic and tetragonal phases between 12 and 24?h dwell time. The piezoelectric, dielectric and ferroelectric properties of these ceramics show a strong correlation with grain size in the range of 16.5–44.5?µm. Nearly dense microstructure (93.1–94.3% t.d.) was maintained during entire dwell time range without sacrificing much of its functional properties. Increasing grain size caused a little decrease in d33* piezoelectric constant from 480 pC/N to 460 pC/N while mechanical quality factor (Qm) increased from 62 to 136. Diffusivity coefficient (γ) ranges between 1.46 and 1.55 which indicates a normal ferroelectric behavior.  相似文献   

6.
In this work, TaC ceramics with a high density (98.6 %) and fine grains (1.42 µm) were fabricated by high pressure sintering. The as-sintered specimen possessed a high dislocation density of 1.9 × 1014 m−2, which contributed to its high hardness of 16.26 GPa. In addition, the electrical conductivity was improved. The characterization results showed that high pressure greatly promoted densification and limited grain growth. The process provides valuable experiences and ideas for obtaining other fully dense structural ceramics with fine grains.  相似文献   

7.
《Ceramics International》2023,49(20):32478-32489
The effect of segregation behavior of non-metallic dopants (H/He/O) and metallic dopants (Be/Al/Mg/Y) on the performance of grain boundary (GB) in SiC has been systematically investigated by first-principles calculations. Firstly, the GB energy and excess volume of different GBs have been studied to evaluate the stability of GB and the capacity to accommodate dopant atoms. The solution energies of dopant atoms greatly reduce in the GB region compared with those in the bulk, which makes the dopant atoms inside the grain tend to segregate and aggregate near the GB. The driving force of GB on dopant segregation generally decreases with the increase of distance from GB plane, and the preferential site of dopant is closely correlated with the atomic size of dopant. In addition, H and Y atom possesses the lowest segregation energy at the interstitial and substitutional site near the GB, respectively. Next, the segregation of single dopant induced the changes in the strength and stability of GB have been explored. It is found that non-metallic dopants have the significant embrittlement effects on GB strength. However, the segregation of most metallic dopants could strengthen the GB and Mg atom has the most significant strengthening effect on the GB. The stability of GB can be greatly improved by segregation of Al and Y dopants. Besides, the aggregation of H atoms has the obvious embrittlement effect on the GB. Furthermore, the co-segregation behavior of different dopants has also been explored. Be and Mg dopants have the most significant inhibition effect on the segregation of detrimental impurities H/He/O due to the repulsive interaction between dopant atoms. The present results provide a new insight into the effect of dopant segregation on GB properties and are expected to be a useful guidance for screening the chemical composition and manipulating the performance of SiC-based ceramics.  相似文献   

8.
Improving the mechanical performance of nanocrystalline functional oxides can have major implications for stability and resilience of battery cathodes, development of reliable nuclear oxide fuels, strong and durable catalytic supports. By combining Monte Carlo simulations, experimental thermodynamics, and in-situ transmission electron microscopy, we demonstrate a novel toughening mechanism based on interplay between the thermo-chemistry of the grain boundaries and crack propagation. By using zirconia as a model material, lanthanum segregation to the grain boundaries was used to increase the toughness of individual boundaries and simultaneously promote a smoother energy landscape in which cracks experience multiple deflections through the grain boundary network, ultimately improving fracture toughness.  相似文献   

9.
Two-step sintering (TSS) was applied on nanocrystalline yttria tetragonal stabilized zirconia (3Y-TZP) to control the grain growth during the final stage of sintering. The process involves firing at a high temperature (T1) followed by rapid cooling to a lower temperature (T2) and soaking for a prolonged time (t). It is shown that for nanocrystalline 3Y-TZP (27 nm) the optimum processing condition is T1 = 1300 °C, T2 = 1150 °C and t = 30 h. Firing at T1 for 1 min yields 0.83 fractional density and renders pores unstable, leading to further densification at the lower temperature (T2) without remarkable grain growth. Consequently, full density zirconia ceramic with an average grain size of 110 nm is obtained. XRD analysis indicated that the ceramic is fully stabilized. Single-step sintering of the ceramic compact yields grain size of 275 nm with approximately 3 wt.% monoclinic phase. This observation indicates that at a critical grain size lower than 275 nm, phase stabilization is induced by the ultrafine grain structure.  相似文献   

10.
应用TP速率等式和线性截距法研究了经1500℃至1700℃烧成的两个合成镁白云石体系中CaO和MgO的晶粒生长,采用回归分析和最小二乘法求得CaO和MgO晶粒的生长指数和晶位生长活化能。结果表明,体系中MgO晶粒的生长速率总比CaO的要大,而加入少量CeO2添加剂的合成镁白云石中CaO和MgO晶粒生长速率比无添加剂的要快。  相似文献   

11.
The effect of grain growth on the thermal conductivity of SiC ceramics sintered with 3 vol% equimolar Gd2O3-Y2O3 was investigated. During prolonged sintering at 2000 °C in an argon or nitrogen atmosphere, the β  α phase transformation, grain growth, and reduction in lattice oxygen content occurs in the ceramics. The effects of these parameters on the thermal conductivity of liquid-phase sintered SiC ceramics were investigated. The results suggest that (1) grain growth achieved by prolonged sintering at 2000 °C accompanies the decrease of lattice oxygen content and the occurrence of the β  α phase transformation; (2) the reduction of lattice oxygen content plays the most important role in enhancing the thermal conductivity; and (3) the thermal conductivity of the SiC ceramic was insensitive to the occurrence of the β  α phase transformation. The highest thermal conductivity obtained was 225 W(m K)−1 after 12 h sintering at 2000 °C under an applied pressure of 40 MPa in argon.  相似文献   

12.
Pure h-BN ceramic specimens were prepared by hot-pressing under different sintering temperatures and pressures using ball milled h-BN powders composed of amorphous and nanocrystalline BN. Microstructures and thermal conductivities of these h-BN ceramic specimens were characterized and measured. Higher sintering pressure is more favorable to the preferred orientation growth of plate-like h-BN grains along the pressure direction, forming microstructures where the c-axes of h-BN grains are preferentially oriented perpendicular to the pressure direction. However, such microstructures can only be obtained at appropriate sintering temperature. Thermal conductivities of h-BN ceramic specimens are strongly related to their microstructures, especially the grain orientation. Growth mechanisms of h-BN grains were investigated. There is multi-area co-growth phenomenon around the grain boundaries composed of the basal planes of h-BN grains, which results in the formation of stacking faults in the as-grown h-BN grains.  相似文献   

13.
In low-voltage varistor ceramics, the phase equilibrium and the temperature of liquid-phase formation are defined by the TiO2/Bi2O3 ratio. The selection of a composition with an appropriate TiO2/Bi2O3 ratio and the correct heating rate is important for the processing of low-voltage varistor ceramics. The total amount of added Bi2O3 is important as the grain growth is slowed down by a larger amount of Bi2O3-rich liquid phase at the grain boundaries. Exaggerated grain growth in low-voltage varistor ceramics is related to the occurrence of the liquid phase and the presence of TiO2 which triggers the formation of inversion boundaries (IBs) in only a limited number of grains, and as a result the final microstructure is coarse grained. The Zn2TiO4 spinel phase only affects grain growth in compositions with a TiO2/Bi2O3 ratio higher than 1.5. In high-voltage varistor ceramics, just a small amounts of Sb2O3 trigger the formation of IBs in practically every ZnO grain, and in compositions with a Sb2O3/Bi2O3 ratio lower than 1, grain growth that is controlled entirely by an IBs-induced grain growth mechanism results in a fine-grained microstructure. The spinel phase interferes with the grain growth only at higher Sb2O3/Bi2O3 ratios.  相似文献   

14.
Sintering behavior of nanocrystalline zinc oxide (ZnO) powder compacts using hot pressing method was investigated. The sintering conditions (temperature and total time) and results (density and grain size) of two-step sintering (TSS), conventional sintering (CS) and hot pressing (HP) methods were compared. The HP technique versus CS was shown to be a superior method to obtain higher final density (99%), lower sintering temperature, shorter total sintering time and rather fine grain size. The maximum density achieved via HP, TSS and CS methods were 99%, 98.3% and 97%, respectively. The final grain size of samples obtained by HP was greater than that of TSS method. However, the ultra-prolonged sintering total time and the lower final density (88 ks and 98.3%) are the drawbacks of TSS in comparison with the faster HP (17 ks and 99%) method.  相似文献   

15.
Combustion reaction plus quick pressing was a developing technique that used the Joule heating effect of combustion reaction to sinter ceramics, and allows very high heating rate, short soaking duration and high pressure for densification of ceramics. By taking advantages of the particular conditions of this method, pure yttria ceramics with a relative density of 98.5% and an average grain size of 50 nm were obtained at 1620 K and 170 MPa. Moreover, the investigation on the grain growth of sintered yttria was carried out by analyzing the microstructure evolutions and responsible mechanisms. The combined effect of the ultra-high heating rate and the high pressure applied on compact at the peak temperature was effective in suppressing particle coarsening and enhancing densification. Besides, under the decreased sintering temperature and soaking duration, the retained nanostructure assisted to inhibit final-stage grain growth while without impeding the further densification of nanocrystalline ceramics.  相似文献   

16.
Current grain growth models have evolved to account for the relationship between grain boundary energy/mobility anisotropy and the five degrees of grain boundary character. However, the role of grain boundary networks on overall growth kinetics remains poorly understood. To experimentally investigate this problem, a highly textured Al2O3 was fabricated by colloidal casting in a strong magnetic field to engineer a unique spatial distribution of grain boundary character. Microstructural evolution was quantified and compared to an untextured sample. From this comparison, a prevalence of (0001)/(0001) terminated grain boundaries with anisotropic networks were identified in the textured sample. These boundaries and their networks were found to be driving grain growth at a faster rate than predicted by models. These findings will allow better modelling of grain growth in real systems by experimentally exploring the impact thereon of grain boundary plane anisotropy and relative energy/mobility differences between neighboring boundaries.  相似文献   

17.
《Ceramics International》2017,43(2):1775-1780
High-purity MgO ceramics with a relative density higher than 99.60% and a mean grain size of 8.1 µm were prepared by hot-pressing at 1450 °C and 35 MPa for 120 min. The MgO ceramic was 130 mm in diameter and 10 mm in height. The densification mechanism and grain growth of MgO powder during the sintering process were investigated based on the principles of general deformation and classical phenomenological kinetic theory. The threshold pressure of plastic deformation at the initial sintering stage was also analysed. The results suggest that plastic deformation is the dominant densification mechanism during the initial period and that an applied pressure of 20 MPa is sufficient for the deformation. During the final period, Mg2+ diffusion along the grain boundaries controls the densification process, and the grain growth activation energy at the final stage is estimated as 336.38±2.35 kJ mol−1.  相似文献   

18.
A systematic study of the solid-state synthesis, pressureless sintering, and grain growth kinetics of Hf6Ta2O17 is presented. The ideal conditions for solids-state synthesis of Hf6Ta2O17 powder with minimal particle necking was 1250 °C for 2 h in air. The resultant powder has an average particle size of 210 ± 70 nm. The combined synthesis and ball-milling procedure produces highly sinterable Hf6Ta2O17 powder, achieving > 97 % of theoretical density after pressureless sintering at 1600 °C for 2 h in air. The grain growth mechanism was sensitive to processing conditions, appearing to be primarily driven by surface diffusion below 1600 °C and grain boundary diffusion above 1650 °C. The respective activation energies for grain growth were found to be QS = 659 ± 79 kJ mol−1 and QGB = 478 ± 63 kJ mol−1.  相似文献   

19.
The sintering behavior of Ce0.9Gd0.1O1.95 (CGO) tape cast layers with different porosity was investigated by an extensive characterization of densification, microstructural evolution, and applying the constitutive laws of sintering. The densification of CGO tapes associates with grain coarsening process at the initial sintering stage at T < 1150 °C, which is mainly influenced by small pores and intrinsic characteristics of the starting powders. At the intermediate sintering stage, densification is remarkably influenced by large porosity. Moreover, the sintering constitutive laws indicate that increasing the initial porosity from 0.38 to 0.60, the densification at the late stage is thermally activated with typical activation energy values increasing from 367 to 578 kJ mol−1. Similar effect of the porosity is observed for the thermally activated phenomena leading to grain growth in the CGO tapes. The analysis of sintering mechanisms reveals that the grain growth behavior at different porosity can be described using an identical master curve.  相似文献   

20.
We studied crystallization, grain growth and electric properties of La0.8Sr0.2MnO3 (LSM) ceramics which were produced using the microwave-treatment. While co-precipitated nanoparticles remain mainly amorphous, the microwave irradiated particles are crystallized into LSM and La2Mn2O7 at 550 °C, due to higher dielectric polarizability of La. This, in turn, decreases the amount of the second phase La2O3 in calcined powder and promotes the growth of perovskite grains during sintering at 1400 °C. Larger grains of LSM ceramics lower the activation energy of small polaron hopping from 0.35 eV to 0.24 eV and increases high-temperature electric conductivity. In addition, high crystallinity of LSM ceramics from the microwave-treatment suppresses a chemical reaction with ZrO2 and NiO in a temperature range of 900 – 1100 °C under oxidizing and reducing ambiances. These results show that LSM ceramics from the microwave-assisted reaction meet requirements for an interconnect layer for solid oxide electrolysis cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号