首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study two series of isotactic polypropylene (iPP)/SiO2 nanocomposites containing 1, 2.5, 5, 7.5, and 10 wt % SiO2 nanoparticles were prepared by melt‐mixing on a twin‐screw corotating extruder. In the first series untreated fumed silica nanoparticles were used, whereas in the second nanoparticles were surface‐treated with dimethyldichlorosilane. In both cases, the average size of the primary nanoparticles was 12 nm. Tensile and impact strength were found to increase and to be affected mainly by the type and content of silica nanoparticles. A maximum was observed, corresponding to samples containing 2.5 wt % SiO2. These findings are discussed in light of the SEM and TEM observations. By increasing the amount of nanoparticles, large aggregates of fumed silica could be formed, which may explain the reduction of mechanical properties with higher concentrations of SiO2. However, it was found that surface‐treated nanoparticles produced larger aggregates than did those derived from untreated nanoparticles, despite the increased adhesion of the iPP matrix, as was postulated from yield strength. This behavior negatively affected mechanical properties. In addition, an effort was made to determine if toughening theories, mainly the critical interparticle distance for rubber toughening or composites, also might be applicable in nanocomposites. From DSC measurements it was demonstrated that silica nanoparticles acted as effective nucleating agents, increasing the crystallization rate and the degree of crystallinity of iPP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2684–2696, 2006  相似文献   

2.
Introducing nanoparticles onto the surface of carbon fibers (CFs) is a useful method for enhancing the quality of fiber-matrix interface. In this work, a liquid sizing agent containing functionalized silica nanoparticles (SiO2) was well prepared to improve interfacial strength and mechanical properties of composites. In order to enhance the dispersion of SiO2 nanoparticles in sizing agent, SiO2 nanoparticles were chemically grafted with 3-aminopropyltriethoxysilane (APS), and then silanized silica (SiO2-APS) was introduced into the interphase by a conventional sizing process as well. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) confirmed the successful preparation of SiO2-APS. Scanning electron microscopy (SEM) showed that a uniform distribution of SiO2-APS on the fiber surface and the increased surface roughness. The sized fibers (CF/SiO2-APS) exhibited a high surface free energy and good wettability based on a dynamic contact angle testing. Interfacial microstructure and mechanical properties of untreated and sized CFs composites were investigated. Simultaneous enhancements of interlaminar shear strength (ILSS) and impact toughness of CF/SiO2-APS composites were achieved, increasing 44.79% in ILSS and 31.53% in impact toughness compared to those of untreated composites. Moreover, flexural strength and modulus of composites increased by 32.22 and 50.0% according to flexural test. In addition, the hydrothermal aging resistance of CF/SiO2-APS composites has been improved significantly owing to the introduced Si-O-Si bonds at the interface.  相似文献   

3.
《Ceramics International》2023,49(12):19753-19765
Graphene-coated SiC nanoparticles containing graphene floating bands (SiC@G) were prepared by a liquid-phase laser irradiation technique, and SiC@G nanoparticles with high dispersivity were incorporated into an Al2O3 matrix. An Al2O3-based composite ceramic tool was prepared by spark plasma sintering (SPS), and the effects of SiC@G nanoparticles on the mechanical and cutting properties and microstructure of the materials were further investigated. Analysis of the cross-sectional morphology shows that SiC@G nanoparticles containing graphene floating bands were homogeneously dispersed in the composite, which resulted in tighter bonds between the Al2O3 particles. This particular core-shell structure increased the contact area between the graphene and the matrix due to the formation of a graphene 3D mesh by extrusion, which enhanced the difficulty of relative sliding of graphene. Second, this special core-shell structure also made the crack propagation path more tortuous, further increasing the energy consumed in the fracture process, which is conducive to improving the mechanical properties of ceramic tools. The addition of SiC@G nanoparticles improves the mechanical properties of Al2O3-based composite ceramic tools. The fracture toughness (7.2 Mpa·m1/2) and flexural strength (709 MPa) increased by 75.6% and 28.7%, respectively. Cutting experiments with Al2O3/SiC/G composite ceramic tool and Al2O3/SiC@G composite ceramic tools on 40Cr hardened steel were performed. The results prove that the addition of SiC@G nanoparticles improves the cutting life by 18.1% and reduces the cutting force and friction coefficient by 6.3% and 14.8%, respectively.  相似文献   

4.
《Ceramics International》2019,45(15):18563-18571
The improvement in the hardness of Sn-3.0Ag-0.5Cu solder alloy reinforced with 1.0 wt % TiO2 nanoparticles was evaluated by nanoindentation. A specific indentation array was performed on four different horizontal cross sections of the composite solder with different heights and diameters, in order to verify the mixing homogeneity of TiO2 nanoparticles within the Sn-3.0Ag-0.5Cu solder paste during the ball milling process. The phase analysis indicated successful blending of the Sn-3.0Ag-0.5Cu with the TiO2 nanoparticles. According the scanning electron microscopy micrographs, presence of the TiO2 nanoparticles reduced the size of the Cu6Sn5 and Ag3Sn intermetallic compound phases. Incorporation of the 1.0 wt % TiO2 nanoparticles improved the hardness values up to 26.2% than that of pure SAC305. The hardness values increased gradually from the top cross sections towards adjacent to the solder/substrate interface. The mechanism of the hardness improvement attained by the TiO2 nanoparticles addition were also investigated on the horizontal cross sections of the samples.  相似文献   

5.
Graphene oxide (GO) and silicon dioxide (SiO2) nanoparticles have been hybridized for improving the mechanical and dynamic mechanical properties of nitrile rubber (NBR). SiO2 nanoparticles were homogeneously dispersed on the surface and between layers of GO, and the new hybrid nanoparticles formed (GO/SiO2) had better thermal stability than GO. To evaluate the mechanical properties, GO/SiO2/NBR nanocomposites were prepared by solution blending and mechanical solution methods. It was observed that tensile strength increased in a larger grade in GO/SiO2/NBR nanocomposites than that in GO/NBR and SiO2/NBR nanocomposites, while the elongation at break only changes smoothly. Moreover, dynamics measurements also indicated that the elasticity increased after adding GO/SiO2 hybrid nanoparticles in NBR. From morphology's analysis of GO/SiO2/NBR and GO/NBR nanocomposites, it is was conclude that the hybridization of the GO/SiO2 was the determining factor for the reinforcement of the mechanical properties and elasticity of the NBR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46091.  相似文献   

6.
The primary objective of this study is to demonstrate the possibility of developing silica, alumina, and zircon-based photocurable ceramic suspensions that can be used for visible light photopolymerization (> 450 nm) and to optimise the binder formulations for the purpose of LCD-based ceramic 3D printing applications. Reference ceramic components for this work are ceramic cores employed in the investment casting of high-pressure turbine blades and vanes. Arguably, one of the most critical steps in photoinduced ceramic 3D printing is developing suitable ceramic suspensions, having high ceramic loading, low viscosity, and short curing times. Ceramic suspensions with four different novel binder formulations and commercial ceramic powders used in core manufacturing (SiO2, Al2O3 and ZrSiO4) were investigated to achieve the best trade-off between: (1) their curing performance (cure depth and curing speed), (2) rheological properties of the binder mixtures at the solid loadings of 60 vol.% for SiO2, 55 vol.% for ZrSiO4, and 45 vol.% for Al2O3; and (3) the green body mechanical properties of the mixtures after printing. The effect of ceramic particles on the selected binders was examined individually, and the correlation between cure depth (Cd), volumetric loading, and curing speed are evaluated. The results show all binders designed in this study provide an adequate cure depth, even at high ceramic loadings. When the curing behaviour of all unloaded binder mixtures from the previous study [1] compared with the 10 vol.% SiO2 loaded mixtures, the cure depth of all formulated binder mixtures increased 50–55 % and the curing thickness of 60 vol.% SiO2 loaded suspensions were still slightly higher than their unloaded counterparts. The rheology outcomes indicate that lower viscosity binders always result in lower viscosity of the ceramic loaded inks, even without taking the effect of dispersants into account. Besides, the addition of N-Vinyl-2-Pyrrolidone (NVP) monofunctional monomer to the binder mixtures significantly reduces the viscosity and changes the normally linear relationship of the mix viscosity and its silica loading content. Among the binder formulations loaded with 60 vol.% of SiO2, the formulation providing the lowest viscosity and highest mechanical property consists of 5 wt.% of NVP, 45 wt.% of HDDA and 50 wt.% of Photocentric 34 resin. Although this binder mixture showed the highest green flexural strength when loaded by 55 vol.% ZrSiO4, all other mixtures loaded with zircon flour also demonstrated a near-fluid behaviour, below 200 s?1. In Al2O3 loaded mixtures, the HDDA di-functional binder formulations present lowest viscosity and the di- and multifunctional monomer blends (HDDA-Photocentric27) showed the highest mechanical properties when used in a 50/50 ratio. This work summarises the best binder choices for silica, alumina and zircon based ceramic suspensions used in core printing for investment casting applications through LCD screen printing.  相似文献   

7.
《Ceramics International》2017,43(12):8813-8818
In this research, the impact of Al2O3 nanoparticles addition on microstructure, mechanical, and physical properties of bauxite self–flowing low-cement castables were investigated. Also, the optimum amount of Al2O3 nanoparticles is determined. For this propose, up to 3 wt% Al2O3 nanoparticles were added to the bauxite castable compositions. The physical and mechanical properties of castable compositions such as bulk density (BD), apparent porosity (AP), self-flow values (SFV), and cold crushing strength (CCS) were examined. Also, the X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDX) techniques were used for detection the ceramic phase's formation and microstructural analysis of the castables compositions, respectively. Results show that addition of Al2O3 nanoparticles up to 1 wt% improved the properties of bauxite self–flowing low-cement castables. As well as, the use of Al2O3 nanoparticles led to the formation of the platy and needle crystalline phases such as hibonite (CaO·6Al2O3), calcium dialuminate (CaO·2Al2O3), and mullite (3Al2O3·2SiO2), between the grain boundaries of the bauxite particles. Also, Al2O3 nanoparticles addition led to aforementioned phase formation occur at the lower temperatures.  相似文献   

8.
《Ceramics International》2017,43(17):14582-14592
Ceramic nanoparticle reinforced aluminum matrix composites usually exhibit superior mechanical properties when compared to monolithic materials, particularly in severe working conditions such as elevated temperatures. Aluminum matrix nano-composites (AMNCs) are widely used for structural applications in aerospace and automotive industries due to their low density and high strength to weight ratio. The aim of this research was to study the effect of SiO2 nanoparticles as the reinforcing phase on the mechanical properties of aluminum matrix composites. For this purpose, powder metallurgy and subsequent hot extrusion methods were used to prepare a reference sample and several Al-SiO2 nano-composite rods, containing 1, 2 and 3 wt% nano-silica. Some sample preparation procedures for the manufacturing process, involved mixing, compaction, sintering, preheating and hot extrusion. Mechanical properties of the developed composites were investigated by macro- and micro-hardness, density measurement, tensile, cold compression and hot compression tests. A scanning electron microscope and an optical microscope were used for microstructural analysis of the composite and monolithic samples before and after the hot extrusion process. Experimental tests on aluminum matrix composites reinforced with nano SiO2 particles revealed that adding just 1 wt% SiO2 nanoparticle increases both hardness and tensile strength by 41.8% and 24.8%, respectively. In addition, the mechanical properties were seen to decrease with increases in the SiO2 weight fraction. Density also decreased as the SiO2 weight fraction increased. It can therefore be said that based on the findings of this study, the SiO2 nanoparticle can be used as an effective reinforcing material for developing aluminum matrix nano-composites.  相似文献   

9.
This article aims to reduce the melting temperature of lead-free solder alloy and promote its mechanical properties. Eutectic tin-silver lead-free solder has a high melting temperature 221 °C used for electronic component soldering. This melting temperature, higher than that of lead–tin conventional eutectic solder, is about 183 °C. The effect of the melt spinning process and copper additions into eutectic Sn-Ag solder enhances the crystallite size to about 47.92 nm which leads to a decrease in the melting point to about 214.70 °C, where the reflow process for low heat-resistant components on print circuit boards needs lower melting point solder. The results showed the presence of intermetallic compound Ag3Sn formed in nano-scale at the Sn-3.5Ag alloy due to short time solidification. The presence of new intermetallic compound, IMC from Ag0.8Sn0.2 and Ag phase improves the mechanical properties, and then enhances the micro-creep resistance especially at Sn-3.5Ag-0.7Cu. The higher Young’s modulus of Sn-3.5Ag-0.5Cu alloy 55.356 GPa could be attributed to uniform distribution of eutectic phases. Disappearance of tin whiskers in most of the lead-free melt-spun alloys indicates reduction of the internal stresses. The stress exponent (n) values for all prepared alloys were from 4.6 to 5.9, this indicates to climb deformation mechanism. We recommend that the Sn95.7-Ag3.5-Cu0.7 alloy has suitable mechanical properties, low internal friction 0.069, low pasty range 21.7 °C and low melting point 214.70 °C suitable for step soldering applications.  相似文献   

10.
In this article, the surface of SiO2 nanoparticles was modified by silane coupling agent N‐(2‐aminoethyl)‐γ‐aminopropylmethyl dimethoxy silane. The bismaleimide nanocomposites with surface‐modified SiO2 nanoparticles or unmodified SiO2 nanoparticles were prepared by the same casting method. The tribological performance of the nanocomposites was studied on an M‐200 friction and wear tester. The results indicated that the addition of SiO2 nanoparticles could decrease the frictional coefficient and the wear rate of the composites. The nanocomposites with surface‐modified SiO2 nanoparticles showed better wear resistance and lower frictional coefficient than that with the unmodified nanoparticles SiO2. The specific wear rate and the steady frictional coefficient of the composite with 1.0 wt % surface‐modified SiO2 nanoparticles are only 1.8 × 10?6 mm3/N m and 0.21, respectively. The dispersion of surface‐modified SiO2 nanoparticles in resin matrix was observed with transmission electron microscope, and the worn surfaces of pure resin matrix and the nanocomposites were observed with scanning electron microscope. The different tribological behavior of the resin matrix and the filled composites should be dependent on their different mechanical properties and wear mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Properties of poly methyl methacrylate are improved using different nanoparticles for denture applications and the best combination is selected using multi-criteria decision-making methods. For these purposes, poly methyl methacrylate is melt compounded with TiO2, SiO2, and Al2O3 nanoparticles and then injection molded. The results of mechanical tests revealed that by addition of TiO2 and SiO2, the impact strengths of poly methyl methacrylate were increased 229 and 62%, respectively. Also, the results indicated a significant improvement in Young’s modulus and hardness. The implementation of multi-criteria decision-making methods illustrated that TiO2 nanoparticles are the best candidate for improving the properties of poly methyl methacrylate for dental applications.  相似文献   

12.
To evaluate the influences of ceramic phase content and its morphology on the mechanical properties of MgO–C refractories, pre-prepared Si powder-phenolic resin loaded with Fe2O3 was introduced to prepare MgO–C refractories via catalytic nitridation. The effects of nitriding temperature and Fe2O3 content on the phase composition, microstructure evolution and properties of MgO–C refractories were studied and compared. The results show that the increase of the nitriding temperature was conducive to the in-situ formation of the ceramic phases, and a new phase of Mg2SiO4 was formed at temperatures ≥1450 °C. Both the increase in nitriding temperature and the addition of catalyst could inhibit the growth of α-Si3N4 to promote the formation of β-Si3N4 and MgSiN2. In addition, the formation of excessive ceramic phases caused samples after nitriding to expand violently and form more porous, thereby reducing the physical properties of MgO–C refractories.  相似文献   

13.
Lu2SiO5 is a promising candidate of environmental barrier coatings (EBC) for silicon based ceramics due to its excellent high temperature stability. However, little information is available for the mechanical and thermal properties of Lu2SiO5, which frustrated evaluation of its performances for EBC applications. In this paper, dense Lu2SiO5 ceramic is successfully fabricated from Lu2O3 and SiO2 powders by in situ hot pressing/reaction sintering at 1500 °C. Mechanical properties, including Young's modulus, bulk modulus, shear modulus, Poisson's ratio, fracture toughness, Vickers hardness, and bending strength are reported for the first time. Lu2SiO5 possesses excellent high temperature mechanical properties up to at least 1300 °C. Thermal stress for the case of Lu2SiO5 or Y2SiO5 coating on silicon bond coat and thermal stress resistance parameter are also estimated based on the experimental mechanical and thermal properties. The present results suggest that Lu2SiO5 has better reliability than Y2SiO5 in harsh thermal environment.  相似文献   

14.
Photocatalytic oxidative paints (e.g., a paint containing nano‐TiO2) are used to break down volatile organic compounds to CO2 by photooxidation reactions. In this research, a photocatalytic oxidative pseudo‐paint was made with acrylic–styrene copolymer latex, TiO2 pigment, calcium carbonate extender, and TiO2 nanoparticles as a photocatalyst. To investigate the effects of the pigment, extender, and nanoparticles on the mechanical properties of the samples and their relationship to their photocatalytic activity, different contents of the particles were dispersed in the paint formulation. The tensile strengths (TSs) of the samples were measured as the mechanical properties. The samples were characterized by scanning electron microscopy analysis. We found that up to 3% nano‐TiO2 enhanced the mechanical properties of the pigmented resin, whereas beyond this, TS decreased. In samples containing 3% nanoparticles, the incorporation of 15% TiO2 pigment caused optimized mechanical properties, and beyond that, TS decreased because of particle agglomeration. In the absence of nanoparticles, the samples showed improvements in the mechanical properties with up to a 40% loading of pigment. The results reveal that the samples containing nano‐TiO2 and pigment showed the same trend for the mechanical and photocatalytic properties before the critical pigment volume concentration (CPVC). However, when the extender was incorporated or TiO2 particles were loaded beyond CPVC, the mechanical and photocatalytic properties correlation was compromised, and they were not directly correlated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42885.  相似文献   

15.
A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO3, Al2O3 or SiO2 were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO4 based on the NCPE containing BaTiO3 delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO4 cells with NCPEs containing Al2O3 and SiO2 was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO3-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.  相似文献   

16.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

17.
Composites of low-density polyethylene containing between 1 and 5?wt% of Si/SiO2 core/shell nanoparticles were prepared by ball milling method. The thermal, mechanical, and dielectric properties of composites were investigated in terms of composition, frequency, and temperature. The results showed that the dielectric permittivity increased smoothly with a rise of Si/SiO2 particle. The dielectric permittivity and loss decreases and increases with temperature, respectively. The resistance of composites to erosion due to partial discharge was significantly improved by adding nanoparticles. The results have demonstrated that ball milling was an effective method for producing relatively homogeneous nanocomposite up to 4?wt% Si/SiO2.  相似文献   

18.
《Ceramics International》2017,43(10):7701-7709
In this study, the effects of TiO2 ceramic nanoparticles and SiC microparticles on the microstructure, mechanical properties and toughness of titanium/TiO2 nanocomposite and titanium/SiC composite were investigated. To achieve this goal, TiO2 and SiC ceramic particles were incorporated as the reinforcement in titanium through the ARB (accumulative roll bonding) process. By adding SiC ceramic particles, the mechanical properties of the composite and the nanocomposite were enhanced, while their toughness was decreased, as compared to TiO2 nanoparticles. After applying 8 cycles of the ARB process, UTS in Ti/5 vol% SiC composite reached to about 1200 (MPa), as compared to that in Ti/0.5 wt% TiO2 nanocomposite, which was about 1100 (MPa). Furthermore, toughness in the Ti/5 vol% SiC composite and the Ti/0.5 wt% TiO2 nanocomposite was 60 and 29 J/m3, respectively. Finally, SEM and TEM images showed SiC microparticles clustering in Ti/SiC composite samples and a suitable distribution of TiO2 nanoparticles in the Ti/TiO2 nanocomposite. By adding TiO2 nanoparticles, mechanical properties and work hardening coefficient were found to be increased, as compared to those of the monolithic samples. TiO2 nanoparticles, after being distributed in the titanium matrix through the ARB process, caused pin dislocations. As clearly shown in TEM images, dislocation tangles around TiO2 nanoparticles acted as the main mechanism improving the work hardening coefficient.  相似文献   

19.
《Ceramics International》2020,46(3):3374-3381
The Na0.325Bi0.395Sr0.245□0.035TiO3 + x % MnCO3 (NBST-100xMn) lead-free ceramic samples had been fabricated by solid-state reaction method. Microstructure and electrical properties with the addition of MnCO3 had been studied in detail. The NBST-4Mn showed a low hysteresis behavior with the maximum electrostrictive coefficient (Q) of 0.0294 m4/C2 and the recoverable energy storage density (Wrec) of 1.3 J/cm3 at 95 kV/cm. In addition, the electrostrictive effect and energy storage ability presented outstanding temperature stability and fatigue resistance, which indicated a promising lead-free ceramic for high precise actuator.  相似文献   

20.
Dispersion of nanoparticles and its effect on the tensile properties were investigated by preparing nanocomposites via mechanical mixing (MM) and optimized ultrasonic dual mode mixing (UDMM) routes. The MM of SiO2 nanoparticles in epoxy resin was employed using glass rod stirring and the UDMM was employed by ultrasonic vibration along with magnetic stirring to produce SiO2-epoxy nanocomposite. Taguchi method was used for optimization of the process parameters of UDMM route considering the tensile strength of the base epoxy. Field emission scanning electron microscopy (FE-SEM) micrographs revealed an improved dispersion quality of SiO2 nanoparticles especially for the UDMM route. Consequently, quality of dispersion affects tensile strength (max 49.2%) along with ductility and absorbed failure energy at low nanoparticle content. Moreover, elastic modulus increases with increasing content of nanoparticle, e.g. in one case 62.55% for 20?wt.% of SiO2 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号