首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
《Ceramics International》2016,42(9):11217-11223
Reaction ignition and chemical mechanisms in volume combustion synthesis of TiB2 via TiO2–B2O3–Mg precursors were studied using in-situ differential thermal analysis, X-ray diffraction, scanning electron microscopy and thermochemical modeling. Mg–TiO2 samples ignited at 607 °C through a sudden single step solid-solid reaction while Mg–B2O3 samples ignited at 810 °C after melting of magnesium. X-ray diffraction analysis revealed that reduction of TiO2 occurs in multiple steps and forms intermediate compounds. Results showed that heat released from the first reaction between TiO2 and Mg ignites the reactions between Mg, Ti and B2O3 resulting in the formation of TiB2. Samples with larger TiO2 particle size or a higher sample surface to volume ratio showed a two-step reaction behavior and the released heat in the first solid state reaction was insufficient for the propagation of the reaction throughout the sample. In addition, Mg3B2O6 undesired by-product was formed as a result of this two-step reaction.  相似文献   

2.
The sintering behavior of La0.9Sr0.1Ga0.8Mg0.2O3-δ oxide-ion conductor was systematically investigated by thermodilatometry. The shrinkage data obtained with heating rates of 4, 7, 10 and 12?°C?min?1 were analyzed by the constant rate of heating model and by construction of the master sintering curve. Validation of the master sintering curve was carried out by measurements of density in conventionally sintered specimens. Slight anisotropy of shrinkage data was found and changes to the basic equation of density was proposed to account for this effect. Plotting the data determined by the constant rate of heating model versus density allowed an easy identification of the density range of constant activation energy. The activation energy (865?kJ?mol?1) obtained from the master sintering curve correlates quite well with that (874?kJ?mol?1) obtained by the constant rate of heating model.  相似文献   

3.
In this work, MgO was applied to modify the titania ceramic slurry, which could realize the high-quality DLP printing of titania ceramic by promoting the grain growth during sintering. Combining the phase and element analysis, it was revealed that the reduced stress concentration and improved mechanical property were attributed to the formation of MgTi2O5 in solid-state reaction between MgO and TiO2. When MgO content increased beyond 10 wt.%, the microstructure pinning effects showed a negative impact on ceramic grain growth. Among all the samples, 5%MgO/TiO2 has exhibited the best bending strength of 71.9 MPa and the densification of 85%, while its sintering temperature reduced by 200 °C. Meanwhile, the compressive property of representing porous TiO2 samples reached 18.2 MPa, which was similar to those of porous ceramics produced by conventional manufacturing routes. Overall, MgO-TiO2 composite ceramic prepared in this study have potential application in field of monolithic catalysts and tissue engineering scaffold.  相似文献   

4.
《Ceramics International》2017,43(4):3688-3692
Li2O-3MgO-mTiO2 (1≤m≤6) ceramics were prepared by the solid state reaction method. X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy techniques were used to investigate the phase composition and crystal structure. With increasing m values, the phase structures of ceramics changed as: (Li2Mg3TiO6, m=1)→(Li2Mg3Ti4O12 and Mg2TiO4, m=2,3)→(Li2Mg3Ti4O12, m=4)→(Li2Mg3Ti4O12, MgTiO3 and Li2MgTi3O8, m=5)→(Li2Mg3Ti4O12, MgTiO3, Li2MgTi3O8 and MgTi2O5, m=6). The optimized sintering temperature was lowered from 1275 °C to 1050 °C. When m=5, Li2O-3MgO-5TiO2 ceramics showed good microwave dielectric properties at a wide sintering temperature range of 1000–1200 °C, and the best microwave dielectric properties of Q×f=71,726 GHz, εr=21.9 and τf=−20.9 ppm/°C were obtained at a relatively low sintering temperature of 1050 °C.  相似文献   

5.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

6.
Ba0.6Sr0.4TiO3 powder was synthesized by a citrate method. The phase development was examined with respect to calcining temperature and heating rate during the calcining process. The results reveal a crucial role of the heating rate to the formation of a pure perovskite phase at low calcining temperatures. It was found that keeping relatively low heating rates ≤0.7 °C/min during the calcining process after 300 °C was favorable to a sufficient decomposition of (Ba,Sr)2Ti2O5·CO3 intermediate phase at low temperatures and consequently led to the formation of a pure perovskite phase at 550 °C. Ba0.6Sr0.4TiO3 powder calcined at the temperature under the heating rate of 0.7 °C/min showed a superfine and uniform particle morphology and high sintering reactivity. As a result, the ceramic specimens prepared from the powder attained reasonable relative densities (94–95%) at sintering temperatures of 1250–1270 °C.  相似文献   

7.
《Ceramics International》2017,43(15):12061-12069
Melt-quenching method was employed for obtaining a glass-ceramic with the following composition 42P2O5·40CaO·5SrO·10Na2O·3TiO2 (mol%) glass. The crystallization and sintering behavior of glass have been studied by using DTA, HSM, XRD, FTIR and SEM methods. It was determined that the surface and volume crystallization mechanisms act simultaneously in bulk glass samples. The comparison of DTA and HSM data revealed that the sintering and crystallization processes are independent. The sintered calcium phosphate glass-ceramic which contained bioactive β-Ca3(PO4)2 and β-Ca2P2O7 phases was successfully prepared. It was determined that during crystallization the primary phase in the precipitate was β-Ca(PO3)2. Other phases appearing in the resulting glass-ceramic were: α-Ca2P2O7, γ-Ca2P2O7, Ca4P6O19 and CaHPO4(H2O)2. Crystalline phases containing Sr and Ti were not detected. SEM analysis of the glass-ceramic microstructure revealed surface crystallization of glass particles and plate-like morphology of crystal growth. The result of the in vitro bioactivity showed that no apatite layer was formed on the surface of the as-prepared glass-ceramic samples after immersion in the simulated body fluid (SBF).  相似文献   

8.
《Ceramics International》2017,43(2):2039-2045
Sub-micron sized TiB2 ceramic powders were prepared via self-propagating high-temperature synthesis (SHS) followed by HCl leaching at different temperatures. Purified powders obtained using optimum process parameters were consolidated by field assisted sintering technology/spark plasma sintering (FAST/SPS) technique. Phase and microstructural analyses of both the powder and sintered samples were carried out by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The chemical analyses and particle size measurements of the specimen were conducted by inductively coupled plasma-mass spectrometry (ICP-MS) and dynamic light scattering (DLS) techniques. The final properties of the sintered sample were determined in terms of density and microhardness. The effects of different HCl leaching temperatures on the formation, microstructure, particle size, purity and sintering behavior of the SHS-produced TiB2 powders were investigated. The SHS reaction of TiO2-B2O3-Mg powders as a starting mixture yielded MgO, Mg3(BO3)2 and Mg beside the desired phase TiB2. All three magnesium containing by-products were completely removed by performing hot HCl leaching. TiB2 powders after SHS reaction and leaching with 9.3 M HCl for 30 min at 80 °C revealed a minimum purity of 98.4% and a homogenous particle size distribution with an average particle size of 536 nm. In the ultimate SPS experiment which was conducted at 1500 °C for 5 min under a pressure of 50 MPa, a relative density of 94.9% and a micro-hardness value of 24.56 GPa were achieved.  相似文献   

9.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

10.
11.
Y-Si-Al-O-N glasses are intergranular phases in silicon nitride based ceramics in which the composition and volume fraction of oxynitride glass phases determine the sintering/shrinkage behaviour. Several investigations on oxynitride glass formation and properties have shown that addition of nitrogen increases glass transition and softening temperatures, viscosity, elastic modulus and hardness. In the present study, effect of TiO2 addition on thermal and mechanical properties of Y-Si-Al-O-N glasses is investigated since the most typical Si3N4 ceramics for bearing applications are fabricated using a Si3N4-Y2O3-Al2O3-TiO2-AlN system. Addition of TiO2 is effective in preparing Y-Si-Al-O-N glasses with lower glass transition temperatures and with higher hardness.  相似文献   

12.
The influence of various sintering aids on the microwave dielectric properties and the structure of Nd(Mg0.5Ti0.5)O3 ceramics were investigated systematically. B2O3, Bi2O3, and V2O5 were selected as liquid-phase sintering aids to lower the sintering temperature. The sintered Nd(Mg0.5Ti0.5)O3 ceramics are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microwave dielectric properties. The sintering temperature of Nd(Mg0.5Ti0.5)O3 microwave dielectric ceramics is generally high, about 1500 °C. However, the sintering temperature was significantly lowered about 175 °C from 1500 °C to 1325 °C by incorporating in 10 mol% B2O3 and revealed the optimum microwave dielectric properties of dielectric constant (r) value of 26.2, a quality factor (Q × f) value of 61,307 (at 9.63 GHz), and τf value of −45.5 ppm/°C. NdVO4 secondary phase was observed at 10 mol% V2O5 addition in the sintering temperature range of 1300–1325 °C, which led the degradation in microwave dielectric properties. The microwave dielectric properties as well as grain sizes, grain morphology, and bulk density were greatly dependent on sintering temperature and various sintering aids. In this study, it is found that Nd(Mg0.5Ti0.5)O3 incorporated with 10 mol% B2O3 with lower sintering temperature and excellent dielectric microwave properties may be suggested for application in microwave communication devices. The use of liquid-phase sintering, the liquid formed during firing normally remains as a grain boundary phase on cooling. This grain boundary phase can cause a deterioration of the microwave properties. Therefore, the selection of a suitable sintering aid is extremely important.  相似文献   

13.
The Ba2-xCaxMgTi5O13 (0 ≤ x ≤ 0.3) microwave dielectric ceramics were for the first time prepared via a conventional solid-state reaction method. A small amount of Ca2+ can dissolve into the lattice by forming solid solutions with a monoclinic structure (C2/m) and further influence the sintering behavior, grain growth and microwave dielectric properties of Ba2-xCaxMgTi5O13 ceramics. Both increase of εr and decrease of Qxf with x should be associated with increased lattice distortion and uneven grain growth although the sample density and the ratio of the ionic polarizability to the molar volume show little variation. Moreover, the A-site bond valence and τf indicate a close relation in current study, such that the Ca2+substitution can induce an increase of τf values. The optimum microwave dielectric properties of εr ∼ 29.3, Qxf ∼ 30,870 GHz (6.5 GHz), and a near-zero τf ∼ +2.1 ppm/°C can be contained in the x = 0.15 ceramic sintered at 1160 °C.  相似文献   

14.
《Ceramics International》2017,43(18):16048-16054
Samples of SiC+10 vol%(Al2O3+Dy2O3) and SiC+10 vol%(Al2O3+Yb2O3) mixtures were obtained by cold isostatic pressing and sintered for one hour in a dilatometer at 1800 °C and 1900 °C, applying heating rates of 10, 20 and 30 °C/min. The results of the complete sintering cycle indicated that the heating rates do not significantly influence the shrinkage, but that temperature and total sintering time may be relevant factors. The compacts sintered at 1900 °C shrank on average 9% more than those sintered at 1800 °C, and it was found that the sintering time can be reduced by 40–50% at faster heating rates. The maximum shrinkage rates occurred at temperatures lower than those of the sintering thresholds for the two mixtures, two temperatures and three heating rates. It was also found that after formation of the liquid, the mechanisms of particle rearrangement and solution-precipitation were not as fast as reported in the literature, even at high heating rates, for example 30 °C/min, but they are responsible for much of the shrinkage occurring throughout the sintering cycle.  相似文献   

15.
Role of three rare earth oxides, viz., La2O3, CeO2 and Yb2O3 on reaction sintering of magnesium aluminate spinel having molar ratio of MgO:Al2O3?=?1:2 from its solid oxide precursors was investigated in static and dynamic heating conditions. Effect of these additives (3?wt%) on densification behavior, phase assemblage and microstructure development were studied in the temperatures of 1500–1700?°C. Yb2O3 enhanced the sintering of spinel, while La2O3 and CeO2 negatively impacted the sintering of magnesium aluminate spinel which can be discerned from the shrinkage curve of TMA as well as from static firing regime. This is ascribed to the formation of secondary phases in La2O3 and CeO2 containing samples which have different crystalline structures to that of spinel. This anisotropy due to different crystallinity hindered the pore shrinkage and pore removal and thereby retarded the densification. Whereas, the cubic structure of the secondary phase formed in Yb2O3 containing sample which is isotropic with the crystalline orientation of the parental spinel phase assisted the densification.  相似文献   

16.
The formation mechanism and microstructural development of the spinel phases in the Co1 − xO/Co2TiO4 composites upon reactive sintering the Co1 − xO and TiO2 powders (9:1 molar ratio) at 1450 °C and during subsequent cooling in air were studied by X-ray diffraction and analytical electron microscopy. The Co2TiO4 spinel occurred as inter- and intragranular particles in the matrix of Ti-doped Co1 − xO grains with a rock salt-type structure during reactive sintering. The submicron sized Co2TiO4 particles were able to detach from grain boundaries in order to reach an energetically favorable parallel orientation with respect to the host Co1 − xO grains via a Brownian-type rotation/coalescence process. Upon cooling in air, secondary Co2TiO4 nanoparticles were precipitated and the Ti-doped Co1 − xO host was partially oxidized as Co3 − δO4 spinel by rapid diffusion along the {1 1 1} and {1 0 0}-decorated interphase interface and the free surface of the composites.  相似文献   

17.
The sintering behaviour of conventional yttria powder was investigated, with emphasis on the effect of sintering additives such as B2O3, YF3, Al2O3, ZrO2, and TiO2, etc. at sintering temperatures from 1000 °C to 1600 °C. Powder shrinkage behaviour was analysed using a dilatometer. The powder sintering mechanisms were identified at different temperatures using powder isothermal shrinkage curves. This analysis showed that the sintering additives B2O3 and YF3 could improve yttria sintering by changing the diffusion/sintering mechanisms at certain temperatures, while sintering additives TiO2, Al2O3 and ZrO2 appeared to retard the powder densification at temperatures around 1000 °C and are more suitable when used at temperatures in excess of 1300 °C. The powder with La2O3 added had the slowest densification rate throughout the test temperatures in this experiment and was also found to be more suitable when used at temperatures higher than 1550 °C.  相似文献   

18.
《Ceramics International》2016,42(11):12613-12616
In the present study, porous silicon carbide ceramics were prepared via spark plasma sintering at relatively low temperatures using Al2O3 and CeO2 as sintering additives. Sacrificial template was selected as the pore forming mechanism, and gelcasting was used to fix the slurry in a short time. The evolution process of the microstructures during different steps was observed by SEM. The influence of the sintering temperature and sintering additives on the shrinkage and porosity of the samples was studied. The microstructures of different samples were characterized, and the mechanical properties were also evaluated.  相似文献   

19.
《应用陶瓷进展》2013,112(5):296-300
Abstract

The 0·15 THz resonator based on the (Mg0·95Ca 0·05)TiO3 (abbreviated as 95MCT hereafter) ceramic was designed, and the dielectric property of 95MCT for application has been studied. La2O3 and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature. X-ray diffraction patterns indicated that MgTi2O5 secondary phase could be effectively suppressed by La2O3 and Nb2O5 additions. When the Nb2O5+La2O3 codoping content was 0·25 wt-%, the ceramic could be densified at 1320°C and also has good dielectric behaviours of Qf?=?69720 GHz (6·8 GHz), ?r?=?20·18 and τf?=??7·56 ppm °C?1. The terahertz resonator designed at 0·15 THz exhibited that with the increasing height of inner cylinder, the two modes’ resonance frequencies decreased.  相似文献   

20.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号