首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(3):3314-3318
A series of NiTiO3/Ag3PO4 composites were prepared by a simple ion-exchange deposition method. The composition and morphology of the samples were determined by XRD, EDS and SEM. UV–vis DRS was used to characterize their optical absorption properties. The loading of NiTiO3 could promote the efficient separation of photoinduced electron-hole pairs and enhance the charge carrier transport to improve the photocatalytic activity. The APO-5 composite exhibited the best photocatalytic activity for the degradation of methyl violet (MV). Kinetics studies indicated that the APO-5 composite showed an apparent rate constant of 0.115 min−1, which was 2.61 times that of pure Ag3PO4.  相似文献   

2.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   

3.
Ag3PO4 catalysts exhibited excellent photocatalytic performance in the degradation and the mineralization of bisphenol A, displaying considerably higher photocatalytic activity than N–TiO2 under visible light (λ > 420 nm). The trapping effects of different scavengers and spectrophotometric results proved that the oxidation of bisphenol A mainly occurred at photogenerated holes on the Ag3PO4 surface, along with a two-electron reduction of dissolved oxygen to H2O2.  相似文献   

4.
磷酸银基光催化材料研究进展   总被引:1,自引:0,他引:1  
开发新型的、高活性的光催化材料是未来光催化技术的发展方向。Ag3PO4由于具有高的量子效率、强的光氧化能力和高效光催化降解有机污染物的能力,已成为材料学、化学、能源和环境科学等领域研究的热点课题。从制备方法、形貌控制以及光催化活性等方面综述Ag3PO4基光催化材料的研究进展与现状,对Ag3PO4基光催化材料面临的问题进行了讨论,并对该类光催化材料的未来发展方向提出了相应的建议。  相似文献   

5.
通过简单搅拌法,成功制备了不同质量比的WO3/Ag3 PO4复合材料.用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、能谱(EDS)、透射电镜(TEM)和紫外可见漫反射光谱(UV-vis DRS)等分析方法对制备的样品进行表征.表征结果表明WO3纳米晶在Ag3 PO4纳米片的表面上均匀分布...  相似文献   

6.
以碳微球(CMSs)为载体,采用离子交换法制备了CMSs负载的磷酸银复合材料(CMSs/Ag3PO4)。对合成的CMSs/Ag3PO4复合材料的相组成、表面形貌和紫外-可见(UV-Vis)吸收光谱进行了表征,通过可见光催化降解甲基橙实验对所制备的CMSs/Ag3PO4复合材料的光催化活性进行了考察。结果表明:CMSs颗粒大小在100~200 nm,CMSs/Ag3PO4颗粒大小在200~250 nm;CMSs/Ag3PO4在可见光范围有强吸收,在可见光照射下,CMSs/Ag3PO4能有效地降解甲基橙,光照射60min对甲基橙的降解率可以达到92.5%;循环使用5次后,对甲基橙的降解率仍然保持为86.2%。  相似文献   

7.
《Ceramics International》2015,41(7):8956-8963
The Ag3PO4/CeO2 heterojunction photocatalyst prepared by an ultrasound-assisted method exhibits an enhanced photocatalytic activity compared to pure Ag3PO4, CeO2, and Ag3PO4/CeO2 obtained without ultrasound action. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet–visible absorption spectroscopy (UV–vis), and the effects of ultrasound on the physicochemical properties and photocatalytic activity of Ag3PO4/CeO2 are discussed. Results show that the ultrasound-assisted synthesis method significantly improves the photocatalytic ability. The mechanism about the improvement was discussed in details.  相似文献   

8.
刘博学 《精细化工》2020,37(1):156-161
以一维棒状ZnO为载体,采用原位生长法制备纳米棒状Ag_3PO_4/ZnO复合材料。通过XRD、SEM、TEM、XPS和UV-Vis-DRS等测试对纳米棒状Ag_3PO_4/ZnO复合材料进行了表征,并评价了样品在可见光下的光催化性能。结果显示,ZnO几乎无可见光活性,通过水热法制备的ZnO形貌发生了改变,为比表面积的增加做出了贡献,为Ag_3PO_4提供了更多的负载可能。在可见光照射下,纯ZnO和Ag_3PO_4对苯酚的降解率分别为20%和38%,复合材料Ag_3PO_4/ZnO对苯酚的降解率为91.24%,光催化降解性能明显高于纯ZnO和Ag_3PO_4。最后,光催化稳定性的研究证明,Ag_3PO_4/ZnO复合材料形成了有效的异质结结构,抑制了电子-空穴的复合,提高了Ag_3PO_4/ZnO复合材料的稳定性。  相似文献   

9.
先采用水热法制备具有分等级结构的BiOBr微球,然后采用沉积-沉淀法将Ag3PO4负载于BiOBr微球表面。采用扫描电子显微镜、X-射线粉末衍射仪、N2吸脱附等温线和紫外-可见漫反射光谱对所制备的样品进行了测试表征;将Ag3PO4/BiOBr微球用于可见光催化分解甲基橙溶液,考察了Ag3PO4的负载量及重复使用对可见光(420nm)催化活性影响的研究。结果表明:Ag3PO4/BiOBr微球具有分等级介孔-大孔结构,Ag3PO4与载体BiOBr间结合紧密。单纯BiOBr微球几乎没有可见光催化活性,负载Ag3PO4后表现出较好的可见光催化活性,其中以Ag3PO4(50%)/BiOBr样品的催化效果最佳,30min内将近90%的甲基橙被降解,该催化剂样品在重复实验中表现出较好光催化稳定性。  相似文献   

10.
11.
采用原位沉淀法制备了Ag3PO4/g-C3N4复合材料,利用XRD、SEM、TEM、UV-Vis DRS和PL等技术对其进行表征。结果显示,g-C3N4呈现二维片状结构,Ag3PO4为立方晶相的类球状结构,且均匀分布在g-C3N4表面。以亚甲基蓝(MB)为模拟污染物,考察g-C3N4与Ag3PO4的不同摩尔比对MB降解率的影响。结果表明,在Ag3PO4/g-C3N4的摩尔比为1:0.7时,Ag3PO4/g-C3N4复合材料的光催化活性最佳,可见光照30 min后MB降解率即达到100%。光催化剂稳定性较好,重复使用5次,MB降解率仍达到85.24%。降解机理研究表明,h 和e-是降解MB的主要活性物质。  相似文献   

12.
以硝酸银和三聚氰胺为原料,采用原位沉淀法制备了Ag3PO4/g-C3N4复合材料,利用XRD、SEM、TEM、UV-Vis DRS和PL等技术对其进行了表征.结果显示,g-C3N4呈二维片状结构,Ag3PO4为立方晶相的类球状结构,且均匀分布在g-C3N4表面.以亚甲基蓝(MB)为模拟污染物,考察g-C3N4与Ag3P...  相似文献   

13.
In an attempt to develop nanostructured photocatalysts with high performance, SrTiO3/Ag3PO4 hetero-nanostructures were successfully fabricated. The formed binary heterojunctions were composed of SrTiO3 nanotubes prepared using liquid-phase deposition, and Ag3PO4 nanoparticles prepared using a sol–gel method. Synthesis details, including morphology, structure, and optical properties of the prepared photocatalysts, were characterized and comparatively discussed. The results showed that at an optimal ratio of SrTiO3 to Ag3PO4 (20–80), the photocatalytic degradation of Basic Blue 41 under 80-min visible light irradiation is the maximum amount of 99%, which is about 4.4 and 1.5 times higher than that of pristine SrTiO3 nanorods and Ag3PO4 nanoparticles, respectively. It can be due to the synergistic effect of two materials that provide high light absorption and charge carriers’ separation. Finally, a detailed possible mechanism for enhancing the photocatalytic activity of the SrTiO3/Ag3PO4 hetero-nanostructures was proposed.  相似文献   

14.
15.
《Ceramics International》2016,42(10):11827-11837
Ternary magnetic Fe3O4 nanowire@CeO2/Ag nanocomposites have been firstly synthesized by means of hydrothermal and co–precipitation techniques, and their ability to adsorb, photocatalytic degradation organic pollutants, methylene blue present in water, and separate, has been demonstrated. The results show that CeO2 and Ag nanoparticles are uniformly deposited on the surface of Fe3O4 nanowires. The photocatalytic experiments demonstrate that the Fe3O4@CeO2/Ag nanocomposites exhibit remarkably enhanced photocatalytic properties and stability compared to CeO2, CeO2/Ag, Fe3O4@CeO2, Fe3O4 under natural sunlight exposure. Moreover, excellent photocatalytic degradation efficiency for phenol and MO are also observed. The enhanced photocatalytic performance may be attributed to the synergetic effect of Fe3O4 nanowire, CeO2 and Ag nanoparticles, which lead to the enhanced light harvesting, the promoted charge separation and enhanced adsorption capacity. In addition, the Fe3O4@CeO2/Ag photocatalyst can be easily collected and separated by an external magnet. These results suggest that the nanocomposites could be exploited as potential candidates for solar photocatalysis.  相似文献   

16.
The photocatalytic degradation (PCD) of 4-nitroaniline was studied in the presence of TiO2 suspensions in a batch and continuous annular reactor. Artificial and solar radiation was employed as sources of UV radiation. The effect of catalyst loading, pH, presence of anions and initial concentration on the rate of photocatalytic degradation was investigated. p-Aminophenol, p-benzoquinone and hydroquinone were identified as the intermediates during the degradation process. A kinetic expression for PCD of 4-NA is provided.  相似文献   

17.
Ag3PO4/AgVO3 heterojunctions with high photocatalytic activities were synthesized via a simple and practical low-temperature solution-phase route by using AgVO3 nanowires as substrate materials. The as-prepared Ag3PO4/AgVO3 heterojunctions included Ag3PO4 quantum dots assembling uniformly on the surface of AgVO3 nanowires. Compared with pure AgVO3 nanowires, Ag3PO4/AgVO3 composite photocatalysts exhibited enhanced photocatalytic activities under visible light irradiation in the decomposition of 4-chlorophenol (4-CP) ethanol solution. The enhanced performance is believed to be induced by the high specific surface area, strong visible-light absorption originating from the quantum dot sensitization of Ag3PO4, and high efficient separation of photogenerated electron–hole pairs through Ag3PO4/AgVO3 heterojunction.  相似文献   

18.
The BiOCl/Ag3PO4 composites have been prepared via a facile and reproducible route. In the composite, Ag3PO4 particles are deposited on the surface of plates of BiOCl. Among the as‐prepared samples, the ultraviolet (UV) and visible light photocatalytic reaction rates of BiOCl/Ag3PO4 composite with the ratio of 1:0.1 are about 4.4 times and 4.5 times than that of pure BiOCl, respectively. Overall, the BiOCl/Ag3PO4 composites not only show highly enhanced visible light photocatalytic activity but also exhibit highly improved UV photocatalytic activity, which could find enormous potential application in addressing environmental protection issues utilizing solar energy effectively.  相似文献   

19.
以磷酸法制备的活性炭、WO3、AgNO3、Na2HPO4?12H2O为原料,采用共沉淀法制备WO3与C不同含量的系列WO3/C/Ag3PO4复合材料.采用XRD、FTIR、XPS、SEM、TEM和固体紫外漫反射(UV-DRS)技术对其进行了结构表征.在可见光照射下,以双酚A(BPA)模拟污染物,评价WO3/C/Ag3P...  相似文献   

20.
《Ceramics International》2015,41(4):5600-5606
In this paper, WO3 nanorods (NRs)/g-C3N4 composite photocatalysts were constructed by assembling WO3 NRs with sheet-like g-C3N4. The as-synthesized photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activity of the photocatalysts was evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation. Compared to pristine WO3 NRs and g-C3N4, WO3 NRs/g-C3N4 composites exhibit greatly enhanced photocatalytic activities. The enhanced performance of WO3 NRs/g-C3N4 composite photocatalysts was mainly ascribed to the synergistic effect between WO3 NRs and g-C3N4, which improved the photogenerated carrier separation. A possible degradation mechanism of RhB over the WO3 NRs/g-C3N4 composite photocatalysts was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号