首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2015,41(8):9849-9861
Four types of different hard transition metal nitrides (TMN:ZrN, CrN, WN and TiN) coatings were deposited on Si (100) and 316LN stainless steel substrates using DC magnetron sputtering. A comprehensive study of microstructure and substrate dependent tribo-mechanical properties of TMN coatings was carried out. Higher hardness (H) and elastic modulus (E) were obtained for WN (H=40 GPa and E=440 GPa) and TiN (H=30 GPa and E=399 GPa) coatings. This is related to the formation of (100) and (111) preferred orientations in WN and TiN coatings, respectively. However, the less hardness and elastic modulus were obtained for ZrN and CrN coatings where (200) orientation is preferred. Remarkably, low friction coefficient (0.06–0.57) and higher wear resistance in the coatings deposited on steel substrates are directly associated with the higher resistance to plastic deformation (H3/E2) and the presence of intrinsic compressive stress. Three body wear modes enhanced the friction coefficient (0.15–0.62) and the wear rate in the coatings deposited on Si substrates. This is primarily associated with low fracture toughness of brittle single crystalline Si (100) substrates. Steel-on-steel contact was dominated in ZrN/steel sliding system. This occurs due to the severe adhesive wear mode of steel ball, whereas, the abrasive wear modes were attained for the CrN, WN and TiN coatings sliding against steel balls.  相似文献   

2.
Different Cr- and Ti-base films were deposited using PVD-arc deposition onto WC-Co substrates, and multilayered coatings were obtained from the superimposition of diamond coatings, deposited on the PVD interlayer using hot filament chemical vapour deposition (HFCVD). The behaviour of PVD-arc deposited CrN and CrC interlayers between diamond and WC-Co substrates was studied and compared to TiN, TiC, and Ti(C,N) interlayers. Tribological tests with alternative sliding motion were carried out to check the multilayer (PVD + diamond) film adhesion on WC-Co substrate. Multilayer films obtained using PVD arc, characterised by large surface droplets, demonstrated good wear resistance, while diamond deposited on smooth PVD TiN films was not adherent. Multilayered Ti(C,N) + diamond film samples generally showed poor wear resistance.Diamond adhesion on Cr-based PVD coatings deposited on WC-Co substrate was good. In particular, CrN interlayers improved diamond film properties and 6 μm-thick diamond films deposited on CrN showed excellent wear behaviour characterised by the absence of measurable wear volume after sling tests. Good diamond adhesion on Cr-based PVD films has been attributed to chromium carbide formation on PVD film surfaces during the CVD process.  相似文献   

3.
《Ceramics International》2016,42(10):11743-11756
The structural and mechanical properties of NbN and Nb-Si-N films have been investigated both experimentally and theoretically, in their as-deposited and annealed states. The films were deposited using magnetron sputtering at substrate bias (UB) between 0 and −70 V. While NbN films were found to crystallize in the cubic δ-NbN structure, Nb-Si-N films with Si content of 11–13 at% consisted of a two-phases nanocomposite structure where δ-NbN nanocrystals were embedded in SiNx amorphous matrix. Films deposited at UB=0 V were highly (001)-textured. Application of substrate bias potential led to a depletion of light atoms, and caused a grain size refinement concomitantly with the increase of (111) preferred orientations in both films. The maximum hardness was 28 GPa and 32 GPa for NbN and Nb-Si-N films, respectively. NbN and Nb-Si-N films deposited at UB=−70 V exhibited compressive stress of −3 and −4 GPa, respectively. After vacuum annealing, a decrease in the stress-free lattice parameter was observed for both films, and attributed to alteration of film composition. To obtain insights on interface properties and related mechanical and thermal stability of Nb-Si-N nanocomposite films, first principles molecular dynamics simulations of NbN/SiNx heterostructures with different structures (cubic and hexagonal) and atomic configurations were carried out. All the hexagonal heterostructures were found to be dynamically stable and weakly dependent on temperature. Calculation of the tensile strain-stress curves showed that the values of ideal tensile strength for the δ-NbN(111)- and ε-NbN(001)-based heterostructures with coherent interfaces and Si3N4–like Si2N3 interfaces were the highest with values in the range 36–65 GPa, but lower than corresponding values of bulk NbN compound. This suggests that hardness enhancement is likely due to inhibition of dislocation glide at the grain boundary rather than interfacial strengthening due to Si-N chemical bonding.  相似文献   

4.
We investigated the mechanical and tribological properties of hydrogenated amorphous carbon (a-C:H) films on silicon substrates by nanoindentation, ball-on-disc tribotesting and scratch testing. The a-C:H films were deposited from an argon/methane gas mixture by bias-enhanced electron cyclotron resonance chemical vapour deposition (ECR-CVD). We found that substrate biasing directly influences the hardness, friction and wear resistance of the a-C:H films. An abrupt change in these properties is observed at a substrate bias of about ?100 V, which is attributed to the bias-controlled transition from polymer- to fullerenelike carbon coatings. Friction coefficients in the range of 0.28–0.39 and wear rates of about 7 × 10?5 mm3/Nm are derived for the polymeric films when tested against WC–Co balls at atmospheric test conditions. On the other hand, the fullerenelike hydrogenated carbon films produced at ion energies > 100 eV display a nanohardness of about 17 GPa, a strong reduction in the friction coefficient (~ 0.10) and a severe increase in the wear resistance (~ 1 × 10?7 mm3/Nm). For these films, relative humidity has a detrimental effect on friction but no correlation with the wear rate was found.  相似文献   

5.
Pure and CuO-dispersed hybrid silica nanocomposite coatings were generated using sols synthesized from acid catalyzed hydrolysis and condensation of n-propyl trimethoxysilane and tetraethoxysilane in combination with copper nitrate. Coatings were initially deposited on soda lime glass substrates by dip coating followed by heat treatment at 150, 250 and 350 °C for 2 h in air and characterized. Coatings were subsequently deposited by dip coating on stainless steel 304 substrates. An optimized heat treatment temperature of 250 °C was chosen based on the contact angles of coatings on soda lime glass substrates and results of thermogravimetric/differential thermal analysis on the dried gels obtained from the sol synthesized from the combination of n-propyl trimethoxysilane and tetraethoxysilane. Gels heat-treated at 250 °C were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy for crystallinity. Characterization of the coatings was carried out with respect to thickness, water contact angle and adhesion. Corrosion testing of coatings on SS 304 was studied by potentiodynamic polarization measurements and electrochemical impedance spectroscopy after 1 h and 24 h exposure to 3.5% NaCl. The corrosion resistances of CuO-dispersed hybrid silica coatings after 1 h and 24 h exposure to 3.5% NaCl solution were higher than that of pure hybrid silica coatings, both of which had thicknesses ranging from 140 nm–200 nm.  相似文献   

6.
The work is devoted to the investigation of nanohardness and tribological properties in TiB2 coatings deposited on austenitic steel substrates using an unbalanced magnetron sputtering with the focus on the coatings prepared under small negative bias to reduce compressive stresses. The coating prepared under floating potential exhibited nanocomposite microstructure with the size of TiB2 (hcp) nanocrystallites in the range of 2–7 nm. It is in contrast with the textured microstructure typically developed under higher negative bias. The reduction of the compressive stresses up to ?0.4 GPa while keeping the nanohardness >30 GPa and the coefficient of friction of 0.77 were obtained in this coating. The highest nanohardness of 48.6 ± 3.1 GPa and indentation modulus of 562 ± 18 GPa were achieved at ?100 V bias in the textured coating. The friction mechanisms include mechano-chemical formation of a tribological oxide film between the sliding partners combined with an abrasive wear.  相似文献   

7.
Amorphous BC4N thin films with a thickness of ∼ 2 μm have been deposited by Ion Beam Assisted Deposition (IBAD) on hard steels substrates, in order to study the wear behavior under high loads and the applicability as protective coatings. The bonding structure of the a-BC4N film was assessed by X-ray Absorption Near Edge Spectroscopy (XANES) and Infrared Spectroscopy, indicating atomic mixing of B–C–N atoms, with a proportion of ∼ 70% sp2 hybrids and ∼ 30% sp3 hybrids. Nanoindentation shows a hardness of ∼ 18 GPa and an elastic modulus of ∼ 170 GPa. A detailed tribological study is performed by pin-on-disk tests, combined with spectromicroscopy of the wear track at the coating and wear scar at pin. The tests were performed at ambient conditions, against WC/Co counterface balls under loads up to 30 N, with the sample rotating at 375 rpm. The coatings suffer a continuous wear, at a constant rate of 2 × 10 7 mm3/Nm, without catastrophic failure due to film spallation, and show a coefficient of friction of ∼ 0.2.  相似文献   

8.
Thick and soft a-C:H:Si coatings containing more than 45% hydrogen (thickness: 25–27 μm, hardness: 6 GPa, Young's Modulus 38 GPa and low ratio of sp3 bonds) were deposited by PACVD with a DC pulsed discharge on nitrided (duplex sample) and non-nitrided austenitic stainless steel (coated sample). After deposition, the chemical, microstructural and tribological properties were studied. Finally, the adhesion and the atmospheric corrosion resistance of a-C:H:Si coatings were also investigated.In pin-on-disk tests, the friction coefficient using an alumina pin of 6 mm in diameter as counterpart, under 0.59 GPa Hertzian pressure was 0.05 for the coated samples and 0.076 for the duplex samples. These values were more than one order of magnitude smaller than the friction coefficient of the nitrided sample without coating, which was around 0.65. In the coated samples, the wear loss could not be measured. In ball-on-disk tests under dry sliding conditions, the coatings were tested under different Hertzian pressures (1.29, 1.44 and 1.57 GPa) using a steel ball with a diameter of 1.5 mm as counterpart. Using a normal load of 9 N, the a-C:H:Si coating of the coated samples was broken and detached thus leading to a coefficient of friction of around 0.429. However, in contrast to that, the friction coefficient of the duplex samples remained stable and reached as maximum a value of 0.208.In abrasive tests, mass loss was undetectable in both duplex and coated samples. Furthermore it could be seen that the a-C:H:Si film showed only some smaller grooves and no severe damage or deformation. On the contrary, severe damage was observed in the only nitrided sample. With respect to adhesion, the critical load to break the coating was higher in the duplex sample (27 N) than in the only coated sample (16.3 N). By chemical analysis using the salt spray fog test, the duplex sample remained clean, but the coated sample failed and presented film delamination as well as general corrosion.  相似文献   

9.
Cubic boron nitride (cBN) coatings were deposited on silicon nitride (Si3N4) cutting inserts through conductive boron-doped diamond (BDD) buffer layers in an electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) system. The adhesion and crystallinity of cBN coatings were systematically characterized, and the influence of doping level of BDD on the phase composition and microstructure of the cBN coatings were studied. The nano-indentation tests showed that the hardness and elastic modulus of the obtained cBN coatings were 78 GPa and 732 GPa, respectively. The tribological properties of the cBN coatings were evaluated by using a ball-on-disc tribometer with Si3N4 as the counterpart. The coefficient of the friction and the wear rate of the cBN coatings were estimated to be about 0.17 and 4.1 × 10 7 mm3/N m, respectively, which are remarkably lower than those of titanium aluminum nitride (TiAlN) coatings widely used in machining ferrous metal. The results suggest that cBN/BDD coated Si3N4 inserts may have great potentials for advanced materials machining.  相似文献   

10.
《Ceramics International》2016,42(4):5231-5237
Cr–Mo–N hard coatings were deposited on SKD11 and silicon wafer substrates at various substrate bias voltages by hybrid PVD consisting of arc ion plating and unbalanced magnetron sputtering. The results showed that the microstructure, phase evolution, and mechanical properties of the coatings were significantly altered at the different substrate bias voltage ranging from 0 to −400 V. The X-ray diffraction analysis results revealed that most of the diffraction peaks originated from the Cr–N phase. These peaks were observed at lower positions with no substrate bias and were shifted to higher positions with increasing substrate bias power. The preferred orientation of the (200) plane became dominant accompanying the (220) plane as the bias voltage was increased. Maximum hardness of approximately 30 GPa was obtained at a bias voltage of −200 V. Additionally, wear test results reveal that the lowest coefficient of friction, between 0.4 and 0.5, was obtained from the Cr–Mo–N film formed at a bias voltage of −200 V.  相似文献   

11.
This paper reports on the mechanical and high pressure tribological properties of nanocrystalline (nc-) Ti(N,C)/amorphous (a-) C:H deposited, using low temperature (~ 200 °C) DC reactive magnetron sputtering. The mechanical properties are affected by the nc-Ti(N,C)/a-C:H phase fraction ratio. For increasing C contents (from 31 to 47 at.%) an increase of the a-C:H phase content and a degradation of the nanocrystalline phase occurs leading to a reduction in nanoindentation hardness (H) values (from 15 to 9 GPa) and reduced modulus (Er) values (from 150 to 80 GPa). A strong correlation between H/E ratio and wear performance was exhibited by the coatings. The synthesized coatings survived up to 100 m sliding distance when tested using pin-on-disc sliding configuration at > 4.5 GPa contact pressures and the measured friction coefficient values were similar for all films (μ  0.21–0.25).  相似文献   

12.
《Ceramics International》2017,43(9):6858-6867
The aim of the paper is to explore the tribological performance of hydroxyapatite (HA) coatings deposited by radio frequency (RF) magnetron sputtering on AZ31 magnesium alloy (96% Mg, 3% Al, 0.7% Zn, 0.3% Mn) for biomedical applications. In this study, the position of the samples on a substrate holder, relative to a target erosion zone was taken into consideration in order to elucidate its impact on the coating characteristics, such as composition, morphology, surface topography and tribology. Substrate rotation and arc-movement were foreseen in the experimental set-up to increase the uniformity of thin film properties. The deposited HA thin films were revealed to exhibit an increase of the Ca/P ratio from 1.83 to 1.97, a decrease of (002) texture and thickness, as the samples were shifted towards the target erosion zone. By coatings, the roughness of Mg alloy was decreased (Ra Mg alloy=31.3 nm; Ra coating=29 nm and 21 nm). The coating placed in the centre of the substrate holder showed high hardness and Young's modulus (H =8.3±0.9 GPa; E=89±10 GPa) than the coating prepared under the target erosion zone (H =6.9±1.1 GPa; E=75±6 GPa). The coating deposited under target erosion zone exhibits superior friction behaviour in simulated body fluid environment, with the friction coefficient (μ) of 0.184, while the sample located in the centre of the substrate holder possesses the friction coefficient (0.306) comparable to the AZ31 substrate (0.307). The low wear rate was determined in the case of coating deposited under target erosion zone (4.83×10−5 mm3 N−1 m−1) than uncoated AZ31 substrate (0.00518 mm3 N−1 m−1) or than coating placed in the centre of the substrate holder (0.00294 mm3 N−1 m−1).  相似文献   

13.
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 ± 0.39 MPa (pure HA) to 2.75 ± 0.38 MPa (2 wt.% GO/HA) and 3.3 ± 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80–90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate.  相似文献   

14.
Amorphous silicon carbon nitride (Si/C/N) coatings were prepared on steel substrates by RF plasma-enhanced chemical vapour deposition (RF-PECVD) from the single-source precursor bis(trimethylsilyl)carbodiimide (BTSC). The films were characterised by X-ray diffraction (XRD), ellipsometry, FTIR, glow discharge optical emission spectroscopy (GDOES), optical microscopy, AFM, hardness measurements, scratch-, tribological- and corrosion-tests. The results of these studies show that the coatings obtained on the RF-powered electrode (cathode) were black, thick (>20 μm) and hard (21–29 GPa), while those grown on the grounded electrode (anode) were yellow, thin (<4 μm) and soft (∼5 GPa). Coatings on the anode contained around 19 at.% oxygen and exhibited silicon predominantly bonded to oxygen. In contrast, the oxygen content of the films deposited on the cathode was below 2 at.%. Silicon atoms in these coatings are co-ordinated predominantly to nitrogen and carbon. The surface of all coatings was very smooth with a maximum rms roughness between 2 nm and 5 nm for an area of 5 μm × 5 μm. Scratch and tribological tests reveal a brittle nature of the cathode-coatings and rather weak adhesion to the metal substrates. Salt-spray tests indicate an excellent corrosion resistance of the material.  相似文献   

15.
Polymer-derived ceramics exhibit a convenient route for the processing of low-dimensional ceramics like coatings or fibres. In previous investigations unfilled and composite coatings have been developed using ammonolysed bis(dichloromethylsilyl)ethane (ABSE) or perhydropolysilazane (PHPS) as precursors and BN, ZrO2 or glass particles as filler materials. The coating systems provide excellent corrosion and oxidation resistance to underlying metals. This paper reports on the effect of the precursor system and the pyrolysis parameters on the conversion behaviour, shrinkage and mechanical properties, including hardness and Young's modulus, of ABSE- and PHPS-based coatings. Therefore the crosslinking and pyrolysis behaviour as well as the mechanical properties of the coatings were investigated up to pyrolysis temperatures of 1000 °C in nitrogen and in air by ATR-IR, SEM, profilometry and nanoindentation measurements. The coatings pyrolysed at 1000 °C in nitrogen, have hardness values of 13 GPa and Young's moduli up to 155 GPa.  相似文献   

16.
The work addresses the preparation of Ni3P3TiO2 nanocomposite coatings on mild steel substrate by the electroless technique. Nanosized TiO2 particles were first synthesized by the precipitation method and then were codeposited (4 g/l) into the Ni3P matrix using alkaline hypophosphite reduced EL bath. The surface morphology, particle size, elemental composition and phase analysis of as-synthesized TiO2 nanoparticles and the coatings were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). Coatings with 20 µm thickness were heat treated at 400 °C for 1 h in argon atmosphere. The morphology, microhardness, wear resistance and friction coefficient characteristics (ball on disc) of electroless Ni3P3TiO2 nanocomposite coatings were determined and compared with Ni3P coatings. The results show that as-synthesized TiO2 nanoparticles are spherical in shape with a size of about12 nm. After heat treatment, the microhardness and wear resistance of the coatings are improved significantly. Superior microhardness and wear resistance are observed for Ni3P3TiO2 nanocomposite coatings over Ni3P coatings.  相似文献   

17.
The effect of nitrogen doping on the mechanical and electrical performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to 1 μm in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness and electrical resistance of the coatings decreased from 65 ± 4.8 GPa (3 kΩ/square) to 25 ± 2.4 GPa (10 Ω/square) with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the sp2 phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics.  相似文献   

18.
《Ceramics International》2017,43(15):11885-11897
In the present study, HA–YSZ nanostructured composites were deposited on Ti–6Al–4 V substrates by electrophoretic deposition of suspensions containing 0, 10, 20 and 40 wt% YSZ. The stability of each suspension was determined by applying response surface methodology, DLVO theory and zeta potential measurement for different YSZ contents and dispersant concentrations. The maximum zeta potential and electromobility of suspended particles was obtained for the suspension with 20 wt% YSZ. The electrophoretic deposition of HA–YSZ nanostructured composites was carried out at a constant voltage of 20 V for 120 s. The deposition kinetics was studied based on a mass-charge correlating approach under ranges of voltage (20–60 V), time (30–300 s) and wt% YSZ (0–40). The as–deposited and sintered HA–YSZ coatings were characterized by SEM, XRD, DSC–TG and FT–IR analyses. The micro-scratch behavior of coated samples indicated the highest critical contact pressures of crack initiation, Pc1 = 4.50 GPa, crack delamination, Pc2 = 5.14 GPa and fracture toughness, KIC = 0.622 MPa m1/2 for HA-20 wt% YSZ sample. The results of potentiodynamic polarization measurements showed that the implementation of 20 wt% YSZ could efficiently decrease the corrosion current density and corrosion rate of coated samples, while corrosion potential and linear polarization resistance were increased.  相似文献   

19.
This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to a thickness of 250 μm then ground and polished to a finished thickness of 100 μm and gamma sterilized. Native Ti–6Al–4V and Co–Cr–Mo alloys were used as controls. The corrosion behavior was evaluated using potentiodynamic polarization, mechanical abrasion and electrochemical impedance spectroscopy under physiologically representative test solution conditions (phosphate buffered saline, pH 7.4, 37 °C) as well as harsh corrosion environments (pH  2, 1 M H2O2, T = 65 °C). Severe environmental conditions were used to assess how susceptible coatings are to conditions that derive from possible crevice-like environments, and the presence of inflammatory species like H2O2. SEM analysis was performed on the coating surface and cross-section. The results show that the corrosion current values of the coatings (0.4–4 μA/cm2) were in a range similar to Co–Cr–Mo alloy. The heterogeneous microstructure of the coating influenced the corrosion performance. It was observed that the coating impedances for all groups decreased significantly in aggressive environments compared with neutral and also dropped over exposure time. The low frequency impedances of coatings were lower than controls. Among the coated samples, passivated nanocarbide coating on Co–Cr–Mo alloy displayed the least corrosion resistance. However, all the coated materials demonstrated higher corrosion resistance to mechanical abrasion compared to the native alloys.  相似文献   

20.
Hybrid nanocomposite coatings derived from titanium tetraisopropoxide and epoxy or acrylic modified silanes were deposited on polycarbonate (PC) by dip coating employing various withdrawal speeds followed by ultraviolet and thermal curing. The effect of different organic functional groups in the precursors and ageing effect of these sols were systematically studied with respect to thickness, abrasion resistance, pencil scratch test, nanoindentation hardness and transmittance. The gels derived from the freshly prepared and aged sols were structurally characterized by FT-IR and TEM analysis. The viscosities of the sols were monitored with time. The change in viscosity is rapid for sol from epoxy modified silane. The thickness of the coatings increases with increase in viscosity in case of both the silane precursors. The scratch as well as abrasion resistance increases as a function of coating thickness. The pencil scratch hardness improves from 2B for the bare PC to a maximum of 3H for the coating obtained from an aged sol derived from epoxy modified silane. Also, the abrasion resistance of the coatings from same sol was maximum as evidenced by a <6% change in haze after 500 cycles, vis-a-vis 40% for the bare PC. The coatings from a freshly prepared sol of acrylic modified silane and titania showed the maximum nanoindentation hardness of 0.52 GPa, when compared to 0.23 GPa for the bare PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号