首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach, based on a combination of salt and hard templating for producing multi-modal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (∼22 nm), and in some cases borderline-macropores (∼64 nm), resulting in high pore volume (∼3.9 cm3/g) while the salt template, zinc chloride, generates borderline-mesopores (∼2 nm), thus imparting high surface area (∼2100 m2/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-clay embedded (∼27% clay content), high surface area (∼1527 m2/g) bimodal carbons (∼2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (∼2, 12 and 28 nm pores), (iii) low temperature (450 °C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (∼87% capacitance retention at current density of 40 A/g) as compared to those without (∼54% capacitance retention).  相似文献   

2.
The preparation of carbon submicrocapsules with size up to 800 nm and a mesoporous shell by hard silica templating is reported. Washing and template synthesis conditions were varied to promote porosity and avoid deformation of the microcapsules. The silica template synthesis conditions analyzed were: silica nucleus formation time (0.25–6 h), octadecyltrimethoxysilane/tetraethylorthosilicate volume ratio for silica shell formation (0.2–0.6) and silica shell formation time (1–24 h). The samples were characterized by 77 K nitrogen adsorption/desorption, mercury porosimetry and electron microscopy. Under all the washing conditions tested the carbon submicrocapsules were deformed due to the large size of the hollow core and the thickness of the shell. Changes in the silica template synthesis conditions did not result in substantial improvement of the strength of the microcapsules. The synthesis of a silica template with a double shell allowed us to obtain thick shell carbon submicrocapsules without significant deflation and with higher porosity. The characterization of these microcapsules showed that they have a BET surface area of 1541 m2/g and a pore size distribution with peaks centered at 0.75, 0.86, 1.0 nm in the micropore range and 3.5 nm in the mesopore range. The pore volume in the 2–80 nm range was 1.7 cm3/g.  相似文献   

3.
Thermally stable mesoporous gallium and gallium–aluminum (atomic ratio of Ga/Al = 4/1 and 1/4) oxides with controlled textural and structural properties were prepared by means of the nanocasting approach. All materials have uniform micron-sized particles, with a quite narrow pore-size distribution centered in the range of 6.2–6.5 nm and specific surface areas as high as 231–322 m2·g 1. Pure mesoporous gallium and gallium–aluminum (Ga/Al = 4:1) oxides exhibit a promising catalytic performance in the dehydrogenation of propane to propene in the presence of CO2 (DHP-CO2). Over the most active materials, during 4 h on stream at 823 K, propene was produced with the yield of 10–18% and high selectivity of 91–95%. Moreover, pure mesoporous gallium oxide exerted a higher resistance on deactivation during the DHP-CO2 process in comparison with gallium oxide prepared without a hard template.  相似文献   

4.
Mesoporous carbon materials (MC) were prepared by soft template, hard template and hydrothermal synthesis methods. And mesoporous carbon supported palladium catalysts were obtained from incipient impregnation method. The prepared samples were characterized by nitrogen adsorption–desorption, X-ray diffraction, transmission electron microscopy and hydrogen chemisorption. Palladium supported on mesoporous carbon prepared by hard template method shows better catalytic performance, it gives the 82.2% selectivity to cyclohexanone oxime at the nitrocyclohexane conversion of 99.4% under the mild reaction conditions of 0.5 MPa and 323 K.  相似文献   

5.
Mesoporous γ-Al2O3 has been successfully synthesized by using calcined coal-series kaolin as raw material and Triton X-100 (TX-100) as template. The effect of TX-100/Al3 + ratio on the structural and textural properties of mesoporous γ-Al2O3 was investigated. Physical properties of obtained samples were characterized by X-ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), thermogravimetric analysis (TG), scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared spectroscopy (FTIR). The results indicated that the amount of TX-100 influenced the structure and porous properties of mesoporous γ-Al2O3 significantly. When TX-100/Al3 + ratio was in the range of 0.03–0.15, all samples had mesoporous structures with BET surface area of 193.0–261.0 m2/g and pore size of 5.04–6.71 nm. In addition, the reaction mechanism involved in the process was proposed and discussed.  相似文献   

6.
Microporous–mesoporous carbons were synthesized via colloidal silica templating using Kraft lignin as a carbon precursor, which is a waste byproduct from paper industry. A unique feature of these carbons are uniform spherical mesopores achieved after dissolving colloidal silica used as a hard template, while micropores were created by post-synthesis CO2 activation. The resulting activated lignin-based carbons possessed high specific surface area (up to 2000 m2/g) and microporosity and mesoporosity easily tunable by adjusting activation conditions and optimizing the amount and particle size of the colloidal silica used. The total pore volumes of activated carbons obtained by using 20 and 13 nm silica colloids as a hard template exceeded 1 and 2 cm3/g, respectively.  相似文献   

7.
Nitrogen-doped ordered mesoporous carbons (N-doped OMCs) with a high surface area of 1741 m2/g and nitrogen content up to 15 wt.% have been synthesized by nanocasting approach by using SBA-15 as a hard template, phenolic resin (resol) as a carbon source and high nitrogen-containing cyanamide as the nitrogen dopant. The introduction of cyanamide not only incorporates high-content nitrogen into the carbon matrix in the primary forms of pyridinic and quaternary species, but also greatly increases the surface area of materials. The obtained N-doped OMCs have large surface area with mesoporosity up to 92%, uniform and appropriate pore size (3.6–4.1 nm), large pore volume (1.2–1.81 cm3/g). These merits together with high nitrogen enrichment lead to a specific capacitance (230 F/g at 0.5 A/g) and good rate capability (175 F/g at 20 A/g with capacitance retention of 77.4%) in 6 M KOH aqueous electrolytes.  相似文献   

8.
《Ceramics International》2017,43(14):11225-11232
Hollow mesoporous silica nanoparticles have emerged as attractive drug delivery carriers. In this work, we report successful synthesis of hollow mesoporous silica nanoparticles (HMSNs) using poly tert-butyl acrylate (PtBA) nanospheres as hard templates and CTAB as structure directing agent for loading sulfasalazine into its porous structure. The samples were synthesized using PtBA; sodium dodecyl sulfate (SDS) - in an aqueous solution of CTAB and tetraethylorthosilicate (TEOS) as the inorganic precursor. Two different methods were utilized to remove organic phases including calcination, and acidic/basic ethanolic solvent extraction approach. For the latter, microstructural studies using SEM and N2 porosimetery revealed the formation of highly uniform mono-dispersed particles of sphere morphology (~ 130 nm) with the high specific surface area (1501 m2/g) and mean pore size of ~ 2.6 nm. However, rather deformed and aggregated sphere-like particles were obtained for the calcined samples. TEM examinations also confirmed the formation of 20–30 nm thick walls for the prepared HMSNs particles. Further, HMSN samples treated by solvent extraction method were functionalized by 3-aminopropyl triethoxysilane (APTS) compound for drug delivery. DTA/TG analysis showed that the total amount of loaded sulfasalazine drug was 5.1 wt%.  相似文献   

9.
Mesoporous silica materials have been synthesized through sol–gel reaction using inexpensive sodium silicate as source of silica and low cost hydroxy carboxylic acid compounds as templates/pore forming agents. The material measured surface area of 1014 m2/g, pore diameter of 65 Å and pore volume of 1.4 cc/g when parameters like time and temperature of synthesis along with mole ratio of TA/SiO2 were optimized. Here TA stands for tartaric acid. Carbonization of sucrose inside the pores of above silica material at 900 °C followed by removal of silica framework using aqueous ethanoic solution of NaOH gave rise to mesoporous carbon material. The resulting materials were characterized by N2-sorption, FTIR spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, thermal analysis and cyclic voltammetry. Three dimensional interconnecting wormhole channel arrangement of mesoporous silica template leads to mesoporous carbon replica with surface area of 1200 m2/g. X-ray photoelectron spectroscopic study (XPS) of the mesoporous carbon material shows the concentration of carbon atom in the range of 97–98% with 1–2% oxygen and negligible amount of silica. The electrochemical double layer capacitance behavior of carbon material with the specific capacitance value of 88.0 F/g at the scan rate of 1 mV/s appears to be promising.  相似文献   

10.
《Ceramics International》2016,42(5):6282-6287
Chrysanthemum-like hierarchical anatase TiO2 nanostructures self-assembled by nanorods have been successfully fabricated by a simple solvothermal route without using template materials or structure-directing additives. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectrometer system (Raman), UV–vis absorption spectroscopy (UV–vis) and N2 adsorption–desorption measurement. The results indicate that synthesized chrysanthemum-like hierarchical anatase TiO2 nanostructures have a spherical shape with an average diameter of 1.5 μm and they are composed of nanorods with a width of about 30 nm and a length of about 300 nm. The pore distribution of the sample exhibits two kinds of pores. Such mesoporous structure of the sample might be extremely useful in photocatalysis because they possess efficient transport pathways to the interior and supplies higher specific area for more pollutant molecules to be absorbed. In addition, the synthesized TiO2 nanostructures show enhanced photocatalytic activity compared with commercial P25 for the degradation of RhB under UV light irradiation, which can be attributed to their special hierarchical structure and high light-harvesting capacity.  相似文献   

11.
《Ceramics International》2017,43(7):5687-5692
This study reports the fabrication and characterization of mesoporous LaNiO3/NiO composite with a very high specific surface area for a battery-type electrode. The mesoporous LaNiO3/NiO composite was synthesized via a sol–gel method by using silica gel as a template, the colloidal silica gel was obtained by the hydrolysis and polymerization of tetraethoxysilane in the presence of La and Ni salts. We investigated the structure and the electrochemical properties of mesoporous LaNiO3/NiO composite in detail. The mesoporous composite sample showed a specific surface area of 372 m2 g−1 with 92.7% mesoporous area and displayed remarkable electrochemical performance as a battery-type electrode material for supercapacitor. The specific capacity values were found to be 237.2 mAh g−1 at a current density of 1 A g−1 and 128.6 mAh g−1 at a high current density of 20 A g−1 in 1 M KOH aqueous electrolyte. More importantly, this mesoporous composite also showed an excellent cycling performance with the retention of 92.6% specific capacitance after 60,000 charging and discharging cycles.  相似文献   

12.
Hierarchically porous carbon materials have many important technological applications; however, most of them were fabricated using either expensive materials or complicated procedures. Based on a general chelate-assisted multi-component co-assembly strategy, nitrogen-doped hierarchically porous carbon materials were fabricated by using Al-based composite and commercial triblock copolymer Pluronic F127 as co-templates, and natural banana peel as precursor. This versatile strategy allowed to easily achieve tunable surface area (700–2100 m2 g−1), pore volume (0.38–1.65 cm3 g−1) and a narrow average mesoporous size of ca. 2.72–4.03 nm by simply varying the dosages of Al3+ and F127, and to attain high N content (4.54 wt%) in a large-scale fabrication system (2 L). X-ray photoelectron spectroscope characterization of the as-prepared sample revealed nitrogen atoms are mainly in the form of pyridinic nitrogen, quaternary nitrogen and pyridine-N-oxide. Importantly, these as-obtained carbon materials showed excellent performance in CO2 capture and bilirubin removal with high adsorption capacities and selectivities. The present fabrication strategy is also applicable to the design of porous carbons doped with other elements by choosing appropriate biomass precursors.  相似文献   

13.
A simple one-step synthesis methodology for the fabrication of mesoporous carbons with an excellent performance as supercapacitor electrodes is presented. The procedure is based on the carbonization of non-alkali organic salts such as citrate salts of iron, zinc or calcium. The carbonized products contain numerous inorganic nanoparticles (i.e. Fe, ZnO or CaO) embedded within a carbonaceous matrix. These nanoparticles act as endotemplate, which when removed, leaves a mesoporous network. The resulting carbon samples have a large specific surface area up to ∼1600 m2 g−1 and a porosity made up almost exclusively of mesopores. An appropriate heat-treatment of these materials with melamine allows the synthesis of N-doped carbons which have a high nitrogen content (∼8–9 wt.%), a large specific surface area and retain the mesoporous structure. The mesoporous carbon samples were employed as electrode materials in supercapacitors. They exhibit specific capacitances of 200–240 F g−1 in 1 M H2SO4 and 100–130 F g−1 in EMImTFSI/AN. More importantly, the carbon samples possess a good capacitance retention in both electrolytes (>50% in H2SO4 and >80% in EMImTFSI/AN at 100 A g−1) owing to their mesoporous structure which facilitates the penetration and transportation of ions.  相似文献   

14.
《Ceramics International》2007,33(6):1125-1128
Cadmium tungstate (CdWO4) nanorods were successfully synthesized via a hydrothermal process and characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL). A pure monoclinic phase of well-crystallized CdWO4 nanorods, with lengths of 250–400 nm and widths of 30–60 nm, could be readily synthesized at as low temperature as 70 °C.The CdWO4 nanorods showed a PL emissions peak at 435 nm.  相似文献   

15.
《Ceramics International》2016,42(14):15253-15260
Gamma phase of mesoporous alumina (MA) with large surface area was successfully synthesized by a facile hydrothermal method followed by thermal treatment for fluoride removal. The as-synthesized MA nanoparticles with average size of 20 nm–150 nm have ordered wormhole-like mesoporous structure. The pore size is 5 nm with a narrow distribution, and the specific surface area reaches 357 m2 g−1 while the bulk density is 0.45 cm3 g−1. Glucose as a small-molecule template plays an important role on the morphology, surface area and pore diameter of the MA. As an ionic adsorbent for fluoride removal, the maximum adsorption capacity of MA is 8.25 mg g−1, and the remove efficiency reaches 90% in several minutes at pH of 3. The Langmuir equilibrium model is found to be suitable for describing the fluoride sorption on MA and the adsorption behavior follows the pseudo-second-order equation well with a correlation coefficient larger than 0.99. The larger surface area and relatively narrow pore size of MA are believed to be responsible for improving the adsorption efficiency for fluoride in aqueous solution.  相似文献   

16.
Two β-diketones 4,4,4-trifluoro-1-2-thenoyl-1,3-butanedione (Htta) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (Htfnb), which contain trifluoroalkyl chain, were selected as the main sensitizer for synthesizing Tm(L)3phen (L = tta, tfnb) complexes. The two near-infrared (NIR) luminescent thulium complexes have been covalently bonded to the ordered mesoporous material MCM-41 via a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) [The resultant mesoporous materials are denoted as Tm(L)3phen–MCM-41 (L = tta, tfnb)]. The Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials were characterized by small-angle X-ray diffraction (XRD) and N2 adsorption/desorption, and they show characteristic mesoporous structure of MCM-41. Luminescence spectra of the Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials were recorded and the corresponding luminescence decay curves were obtained. After ligand-mediated excitation, the emission spectra of the Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials show the characteristic NIR-luminescence of the Tm3+ ion. The full width at half maximum (fwhm) of the 1474-nm emission band are 96 and 100 nm for Tm(tta)3phen–MCM-41 and Tm(tfnb)3phen–MCM-41, respectively. The good luminescent performances enable these NIR-luminescent mesoporous materials to have potential applications in optical amplification [broadening amplification band from C band (1530–1560 nm) to S+ band (1450–1500 nm)]. Furthermore, the comparison of the luminescence behavior for Tm(tta)3phen–MCM-41 and Tm(tfnb)3phen–MCM-41 mesoporous materials was investigated. It shows that Tm(tfnb)3phen–MCM-41 is somewhat superior to Tm(tta)3phen–MCM-41 as optical amplifier.  相似文献   

17.
The effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on hydroxyapatite (HAP) and tricalcium phosphate (TCP) was investigated. Fine grained monophase HAP and biphasic HAP/TCP biomaterials were processed starting from stoichiometric and calcium deficient nanosized HAP powders. The HAP samples microwave (MW) sintered for 15 min at 900 °C, with average grain size of 130 nm, showed better densification, higher density and certainly higher hardness and fracture toughness than samples conventionally sintered for 2 h at the same temperature. By comparing MW sintered HAP and HAP/TCP samples, it was concluded that pure HAP ceramics have superior mechanical properties. For monophase MW sintered HAP samples, the decrease in the grain size from 1.59 μm to 130 nm led to an increase in the fracture toughness from 0.85 MPa m1/2 to 1.3 MPa m1/2.  相似文献   

18.
Mesoporous polyacrylonitrile and carbon fibers have been prepared by electrospinning and subsequent supercritical drying and carbonization. Polyvinylpyrrolidone was used as a template. Ambient drying, oxidation, and supercritical drying were conducted to investigate the effects of treatment methods on the structure of the fibers. Interesting surface morphologies of the fibers, including nanoconvexities and nanorods, were found when the different drying methods were used. The surface area of the mesoporous carbon fibers was estimated as 602.0 m2 g1, with an average pore size of 3.6 nm.  相似文献   

19.
《Ceramics International》2016,42(3):4072-4079
Mesoporous γ-Al2O3 (MA) with agglomerated nanoparticles was successfully synthesized by using aluminum sulfate as inorganic Al resource, and hexamethylene tetramine (HMTA) as precipitant without using any surfactants, via a hydrothermal method. All the experimental processes experienced the hydrolysis, precipitation and calcination steps. The structural and morphological properties of uncalcined and calcined samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry differential thermal gravity (TG-DTG) and N2 adsorption–desorption. The bulk density of the sample is 0.682 cm3  g−1, and the specific surface area is 273.302 m2 g−1. The pore diameters (7.1 nm and 9.7 nm) indicate that a typical bimodal mesoporous structure was formed within MA. In order to tune the structural properties of MA, various kinds of inorganic aluminum sources and precipitating agents were employed to carry out contrast experiments, which leaded to regular variations in the specific surface area (200.898–273.302 m2 g−1), pore volume (0.121–1.327 cm3 g−1) and pore size (3.7–35.9 nm). At the same time, the experimental results also demonstrated that the various kinds of Al resources and precipitants had no effects on the crystal structure of MA. However, the morphologies of samples, such as nanoparticles, short fibers, flower-like and block-shaped, can be controlled effectively. The present study provides a simple and effective approach for preparing MA, and the structural properties of MA can be controlled precisely by carefully choosing aluminum sources and precipitants. The approach of this work not only allows us to investigate the growth mechanism of the final product, but also reduces cost and the environmental pollution effectively than other template methods.  相似文献   

20.
《Ceramics International》2017,43(9):7033-7039
A double-chain quaternary ammonium salt of dioctyl dimethyl ammonium chloride (DDAC8) was first used as a low-cost template to prepare the mesostructured zirconia nanomaterials in an alcohol-thermal system. The material was calcinated to obtain pure tetragonal crystalline zirconia (t-zirconia) and thus has significantly improved original structure properties, including a narrow pore size distribution of 4–7 nm and a high surface area of 195 m2/g. The t-zirconia hierarchical nanoparticle aggregate material is different from the smooth microsphere material obtained using the single chain quaternary ammonium salt template. The characteristic rough surface morphology results from the grid distribution form of the DDAC8 micelles in the ethanol solution and caused the formation of more defect sites, which demonstrate the potential for possible catalytic applications. A formation mechanism of the mesoporous zirconia nanomaterial in the alcohol-thermal system of the surfactants is reasonably explained. The synthesis system may provide a new approach to the preparation of mesoporous nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号