首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different doping elements have been used to reduce the dielectric losses of CaCu3Ti4O12 ceramics, but their dielectric constants usually are undesirably decreased. This work intends to reduce their dielectric losses and simultaneously enhance their dielectric constants by co-doping Y3+ as a donor at A site and Al3+ as an acceptor at B site for substituting Ca2+ and Ti4+, respectively. Samples with different doping concentrations x = 0, 0.01, 0.02, 0.03, 0.05 and 0.07 have been prepared. It has been shown that their dielectric losses are generally reduced and their dielectric constants are simultaneously enhanced across the frequency range up to 1 MHz. The doped sample with x = 0.05 exhibits the highest dielectric constant, which is well over 104 for frequency up to 1 MHz and is about 20% higher than the undoped sample. Impedance spectra indicate that the doped samples have much higher grain boundary resistance than the undoped one.  相似文献   

2.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

3.
《Ceramics International》2016,42(7):8467-8472
Dielectric properties of Ca1−3x/2YbxCu3−yMgyTi4O12 (x=0.05, y=0.05 and 0.30) prepared using a modified sol–gel method and sintered at 1070 °C for 4 h were investigated. The mean grain sizes of the CaCu3Ti4O12 and co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 (y=0.05 and 0.30) ceramics were ≈15.86, ≈3.37, and ≈2.32 μm, respectively. Interestingly, the dielectric properties can be effectively improved by co-doping with Yb3+ and Mg2+ ions to simultaneously control the microstructure and properties of grain boundaries, respectively. These properties were improved over those of single-doped and un-doped CaCu3Ti4O12 ceramics. A highly frequency−independent colossal dielectric permittivity (≈104) in the range of 102–106 Hz with very low loss tangent values of 0.018–0.028 at 1 kHz were successfully achieved in the co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 ceramics. Furthermore, the temperature stability of the colossal dielectric response of Ca1−3x/2YbxCu3−yMgyTi4O12 was also improved to values of less than ±15% in the temperature range from −70 to 100 °C.  相似文献   

4.
《Ceramics International》2017,43(12):9178-9183
Low temperature preparation of CaCu3Ti4O12 ceramics with large permittivity is of practical interest for cofired multilayer ceramic capacitors. Although CaCu3Ti4O12 ceramics have been prepared at low temperatures as previously reported, they have rather low permittivity. This work demonstrates that CaCu3Ti4O12 ceramics can not only be prepared at low temperatures, but they also have large permittivity. Herein, CaCu3Ti4O12 ceramics were prepared by the solid state reaction method using B2O3 as the doping substance. It has been shown that B2O3 dopant can considerably lower the calcination and sintering temperatures to 870 °C and 920 °C, respectively. The relative permittivity of the low temperature prepared CaCu3Ti4−xBxO12 ceramics is about 5 times larger than the previously reported results in the literature. Furthermore, the dielectric loss of the CaCu3Ti4−xBxO12 ceramics is found to be as low as 0.03. This work provides a beneficial base for the future commercial applications of CaCu3Ti4O12 ceramics with large permittivity for the cofired multilayer ceramic capacitors.  相似文献   

5.
A chemical solution processing method based on sol-gel chemistry (SG) was used to synthesize (1-x)Y2/3Cu3Ti4O12-xSrTiO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) ceramics successfully. The 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics sintered at 1050 °C for 20 h showed fine-grained microstructure and high dielectric constant (ε′  1.7 × 105) at 1 kHz. Furthermore, the 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics appeared distinct pseudo-relaxor behavior. Two electrical responses were observed in the combined modulus and impedance plots, indicating the presence of Maxwell-Wagner relaxation. Sr vacancies and additional oxygen vacancies had substantial contribution to the sintering behavior, an increase in grain growth, and relaxation behaviors in grain boundaries. The contributions of semiconducting grains with the nanodomain and insulating grain boundaries (corresponding to high-frequency and low-frequency electrical response, respectively) played important roles in the dielectric properties of (1-x)Y2/3Cu3Ti4O12-xSrTiO3 ceramics. The occurrence of the polarization mechanism transition from the grain boundary response to the electrode one with temperature change was clearly evidenced in the low frequency range.  相似文献   

6.
CaCu3(Ti4?xHfx)O12 ceramics (x = 0.04, 0.1 and 0.2) were prepared by conventional synthesis (CS) and through reactive sintering (RS), in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of Hf-doped CCTO (CCTOHf) have been studied by XRD, FE-SEM, AFM, Raman and impedance spectroscopy (IS) in order to correlate the structure, microstructure and the electrical properties. Samples prepared by reactive sintering show slightly higher dielectric constant than those prepared by conventional synthesis in the same way than the pure CCTO. Dielectric constant and dielectric losses decrease slightly increasing Hf content. For CCTOHf ceramics with x > 0.04 for CS and x > 0.1 for RS, a secondary phase HfTiO4 appears. As expected, the reactive sintering processing method allows a higher incorporation of Hf in the CCTO lattice than the conventional synthesis one.  相似文献   

7.
《Ceramics International》2017,43(12):8664-8676
Single-phase Ca1−3x/2TbxCu3Ti4−xTbxO12 (0.025≤ x≤0.075) (CTCTT) ceramics with a cubic perovskite-like structure and a fine-grained microstructure (1.6‒2.3 µm) were prepared using a mixed oxides method. The results revealed that mixed valence states of Cu2+/Cu+, Ti4+/Ti3+, and Tb3+/Tb4+ coexisted in CTCTT. A multiphonon phenomenon in the Raman scattering at 1148, 1323, and 1502 cm−1 was reported for undoped and doped CTTO. Tb was mainly incorporated in the interior of the CTCTT grains rather than on the surface. The dielectric permittivity of CTCTT (εr'RT =3590‒5200) decreased relative to CCTO (εr'RT =10240) at f =1 kHz, but the dielectric loss of CTCTT (the minimum value of tan δ=0.12 at RT) increased as a result of Tb doping. The defect chemistry of CTCTT is discussed. The internal barrier layers capacitance (IBLC) model was adopted for impedance spectroscopy (IS) analysis. The activation energies of the grain boundaries (Egb) and semi-conductive grains (Eg) for CTCTT were determined to be 0.52 eV and 104 meV, respectively. The IS and defect chemistry analyses confirmed that the decrease in the dielectric permittivity was mainly due to a decrease in conductivity in the semiconducting CTCTT grains caused by the acceptor effect of Tb4+ at the Ti site, which resulted in a decrease in the IBLC effect.  相似文献   

8.
The system La(Mg1/2Ti1/2)O3–Bi(Mg1/2Ti1/2)O3 (LMT–BMT) was investigated in respect to formation of perovskite solid solutions based on lanthanum magnesium titanate. Single-phase perovskite (1  x)LMT–xBMT ceramics (0  x  0.3) were prepared and their crystal structure and dielectric properties were studied. It has been found that within the solubility range the crystal structure of Bi-substituted LMT remains monoclinic, P21/n. Unit cell volume was evaluated to be almost independent on x, varying within the experimental error. Relative permittivity of the ceramics increases by almost a factor of 3 in the range 0  x  0.3 and its value is 40–45 at the compositional region where temperature coefficient of the resonant frequency passes a zero-value. Compositional and temperature variations of the dielectric parameters for LMT–BMT estimated at different frequency ranges are considered in comparison with those observed in other Bi-substituted ceramics based on LMT.  相似文献   

9.
《Ceramics International》2016,42(3):4268-4273
Lightly cobalt-modified, Aurivillius-type, sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) ceramics were synthesized by substituting a small amount of cobalt ions onto the Ti4+ sites using conventional solid-state reaction. X-ray photoelectron spectroscopy (XPS) analysis coupled with bond valence sum calculations show that the dopant cobalt ions substitute for Ti4+ ions in the form of Co3+. The resultant cobalt-modified NBT ceramics (NBT-Co) exhibit better piezoelectric and electromechanical properties by comparison with pure NBT. With only 0.3 wt% Co3+ substitution, the piezoelectric properties of the NBT-Co ceramics are optimal, exhibiting a high piezoelectric coefficient (d33~33 pC/N), a low dielectric loss tan δ (~0.1% at 1 kHz), a high thickness planar coupling coefficient (kt~34%) as well as a high Curie temperature (Tc~663 °C). Such NBT-Co ceramics exhibit nearly temperature-independent piezoelectric and electromechanical properties up to 400 °C, suggesting that these cobalt-modified NBT ceramics are promising materials for high temperature piezoelectric applications.  相似文献   

10.
In this work, the effects of Cu composition on the thermal stability of the dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics obtained via a polymer-pyrolysis chemical process were studied. The mean grain sizes of Cu-stoichiometric (x = 0), Cu-deficient (x < 0) and Cu-excess (x > 0) CaCu3+xTi4O12 ceramics were found to be ~3.2, ~3.4 and ~3.7 μm, respectively. Interestingly, very good dielectric properties (0.020 ≤ tanδ ≤ 0.038 and 4000 ≤ ε′ ≤ 7065) were attained in CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.1, excluding x = 0.2) ceramics. Moreover, the variation of dielectric constant (ε′) within a limit of ±15% (Δε± 15%) over a wide temperature range (TR) of ?70 – 220 °C with low tanδ < 0.05 (tanδ<0.05) over a TR of ?70 to 80 °C were achieved in a CaCu2.8Ti4O12 ceramic. These results suggest that this ceramic could be applicable for X9R capacitors and energy storage devices that require high thermal stability. Additionally, the nonlinear properties of Cu-nonstoichiometric ceramics could be improved when compared with those of the Cu-stoichiometric material. The incremental changes of dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics revealed the significant role of Cu composition on grain boundary resistance (Rgb), which was confirmed by impedance spectroscopy analysis. In addition, XANES results revealed the proper ratios of Cu+:Cu2+ and Ti3+:Ti4+ found in these ceramics, indicating the semiconducting behavior of these grains.  相似文献   

11.
This study elucidates the microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5?xTix)O3 ceramics with a view to their potential for microwave devices. The Nd(Mg0.5Sn0.5?xTix)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics revealed no significant variation of phase with sintering temperatures. A dielectric constant (?r) of 21.1, a quality factor (Q × f) of 50,000 GHz, and a temperature coefficient of resonant frequency (τf) of ?60 ppm/°C were obtained for Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

12.
The anti-reduction of Ti4+ ions in Ba4.2Sm9.2Ti18O54 (BST) ceramics at high sintering temperature over 1300 °C was investigated. MgO, Al2O3 and MnO2 were added separately to suppress the reduction of Ti4+ ions so as to improve the microwave dielectric properties of BST ceramics. The microstructure of BST ceramics was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was used to study the electroconductivity of BST ceramics and valency changes of Ti ions. The results showed that MgO or Al2O3, when acting as an acceptor, could effectively suppress the reduction of Ti4+ ions and significantly improve the Q × f values of BST ceramics at the cost of dielectric constant. Meanwhile, MnO2 as an oxidant had also improved the Q × f values but with no decrease in dielectric constant. Excellent microwave dielectric properties were achieved in Ba4.2Sm9.2Ti18O54 ceramics doped with 0.2 wt.% Al2O3 sintered at 1340 °C for 3 h: ?r = 76.9, Q × f = 10,120 GHz and τf  = ?22.7 ppm/°C.  相似文献   

13.
In the BaO–La2O3–TiO2 system, the BanLa4Ti3 + nO12 + 3n homologous compounds exist on the tie line BaTiO3–La4Ti3O12 besides tungstenbronze-type like Ba6  3xR8 + 2xTi18O54 (R = rare earth) solid solutions. There are four kinds of compounds in the homologous series: n = 0, La4Ti3O12; n = 1, BaLa4Ti4O15; n = 2, Ba2La4Ti5O18; n = 4, Ba4La4Ti7O24. These compounds have the layered hexagonal perovskite-like structure, which has a common sub-structure in the crystal structure. These compounds have been investigated in our previous studies. In this study, we have investigated the phase relation and the microwave dielectric properties of BaxLa4Ti3 + xO12 + 3x ceramics in the range of x between 0.2 and 1.0. With the increase in x, the dielectric constant ɛr locates around 45, the quality factor Q × f shows over 80,000 GHz at x = 0.2 and the minimum value of 30,000 GHz at x = 0.9, and the temperature coefficients of resonant frequency τf is improved from −17 to −12 ppm/°C. At x = 0.2, the ceramic composition obtained has dielectric constant ɛr = 42, the temperature coefficient of the resonant frequency τf  = −17 ppm/°C and a high Q × f of 86,000 GHz.  相似文献   

14.
The microstructure and giant dielectric properties of Y3+ and Nb5+ co–doped TiO2 ceramics prepared via a chemical combustion method are investigated. A main rutile–TiO2 phase and dense ceramic microstructure are obtained in (Y0.5Nb0.5)xTi1-xO2 (x = 0.025 and 0.05) ceramics. Nb dopant ions are homogeneously dispersed in the microstructure, while a second phase of Y2O3 particles is detected. The existence of Y3+, Nb5+, Ti4+ and Ti3+ as well as oxygen vacancies is confirmed by X–ray photoelectron spectroscopy and X–ray absorption near edge structure analysis. The sintered ceramics exhibit very high dielectric permittivity values of 104–105 in the frequency range of 40–106 Hz. A low loss tangent value of ≈0.08 is obtained at 40 Hz. (Y0.5Nb0.5)xTi1-xO2 ceramics can exhibit non–Ohmic behavior. Using impedance spectroscopy analysis, the giant dielectric properties of (Y0.5Nb0.5)xTi1-xO2 ceramics are confirmed to be primarily caused by interfacial polarization.  相似文献   

15.
The surface of H2Ti4O9·xH2O titanate nanosheets was modified using the sulfonated tetrafluoroethylene-based polymer Nafion®, via layer-by-layer assembly. The surface modification allowed the titanate nanosheets to be highly dispersed in hydrophobic organic solvents. Thick films of surface-modified nanosheets were prepared on indium tin oxide (ITO)-coated glass substrates as a negative electrode by electrophoretic deposition. The thickness of the films increased with increasing deposition time and grew to more than 8 μm in 600 s under potentiostatic conditions at 7.5 V. The electrophoretically deposited thick films showed significant hydrophobicity with contact angle for water 95°, and enhanced adsorption and higher photocatalytic activity for hydrophobic dyes such as thionine than those of thick films prepared from unmodified titanate nanosheets.  相似文献   

16.
The point defects and the structural and dielectric properties of Dy-doped BaTiO3 ceramics prepared at 1400 °C were investigated. The solubility of Dy in the self-compensation mode was determined to be x = 0.07 for (Ba1−xDyx)(Ti1−xDyx)O3, and no EPR signals associated with the Dy3+ Kramers ion or the Ba and Ti vacancies were detected using the electron paramagnetic resonance (EPR) technique. As x increases, the dielectric behavior changed from a first-order phase transition to a diffuse phase transition to a Y7R dielectric-temperature stability. A strong EPR signal at g = 1.974, which is rare among rare-earth-doped BaTiO3 ceramics appeared unexpectedly in the single-phase (Ba1−xDyx)Ti1−x/4O3 ceramics with deliberately designed Ti vacancies. This signal was attributed to ionized Ba vacancy defects. A preference for the self-compensation mode of Dy3+ ions is responsible for the appearance of Ba vacancies. The real formula of the nominal (Ba1−xDyx)Ti1−x/4O3 is expressed as (Ba1−xDy3x/4)(Ti1−x/4Dyx/4)O3. In addition, the defect chemistry is discussed.  相似文献   

17.
The (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were prepared by conventional solid-state route. The dielectric properties and structure of (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were investigated. It has been found that MgTiO3 and CaTiO3 are the main phases and a second phase CaZrTi2O7 appeared in 95MCT ceramics co-doped with Zn–Zr. With Zn–Zr additive, the sintering temperature of 95MCT ceramics can be reduced to 1300 °C, and adjust the temperature coefficient of dielectric constant. With the increasing of Zr content, dielectric constant ?r decrease from 22.6 to 19.91 and the temperature coefficient of dielectric constant αc from 5.93 to 2.52 ppm/°C when x = 0.01, 0.02, 0.03 and 0.04 mol respectively. The 95MCT ceramics with x = 0.02 has a dielectric constant ?r of 22.02, a dielectric loss of 2.78 × 10?4 and a temperature coefficient of dielectric constant αc value of 2.98 ppm/°C.  相似文献   

18.
A novel strategy to improve the dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics that deliberately created a binary-phase system of CaCu3−xMgxTi4O12/CaTiO3 was proposed and can be performed with a starting nominal formula of Ca2Cu2−xMgxTi4O12. Mg2+ doping ions were preferentially incorporated only into the CaCu3Ti4O12 phase. Substitution of Mg2+ into CaCu3Ti4O12/CaTiO3 can cause a significant increase in dielectric permittivity and a large reduction of the loss tangent to <0.015 at 1 kHz; while, retaining excellent temperature dielectric-stability. Sintering time had a slight influence on the dielectric properties, but remarkable effects upon the nonlinear electrical properties of CaCu3−xMgxTi4O12/CaTiO3 ceramics. Degradation of nonlinear properties with increased sintering time is suggested to be the result of the dominant effect of oxygen vacancies. Impedance spectroscopy analysis demonstrated that improved dielectric and nonlinear properties could be attributed to the enhanced electrical responses of CaCu3Ti4O12–CaTiO3 and CaCu3Ti4O12–CaCu3Ti4O12 interfaces resulting from Mg2+ doping ions.  相似文献   

19.
A study of the substitution influence of Nb5+ and Fe3+ impurities on piezoelectric behaviour has been carried out. Different substitution concentrations as well as undoped materials have been performed for ceramics Pb(Zr1  xTix)O3 with x = 47 and 40. The different impurity concentrations, and their type, produce variations in the domain wall mobility related to the extrinsic coefficient. This dependence between extrinsic behaviour and impurity concentration is studied for different material structures: the rhombohedral and morphotropic phase boundary (MPB). Two methods are used to characterize the extrinsic and intrinsic behaviours. Elastic and piezoelectric non-linear characterization at resonance has been made in isothermal conditions by impedance and vibration velocity measurements. In order to obtain the intrinsic coefficients, linear characterization at very low temperature has been carried out.  相似文献   

20.
CuAl1?xFexO2 (x = 0, 0.1, and 0.2) thermoelectric ceramics produced by a reaction-sintering process were investigated. Pure CuAlO2 and CuAl0.9Fe0.1O2 were obtained. Minor CuAl2O4 phase formed in CuAl0.8Fe0.2O2. Addition of 10 mol% Fe lowered the sintering temperature obviously and enhanced the grain growth. At x = 0.1, electrical conductivity = 3.143 Ω?1 cm?1, Seebeck coefficient = 418 μV K?1, and power factor = 5.49 × 10?5 W m?1 K?2 at 600 °C were obtained. The reaction-sintering process is simple and effective in preparing CuAlO2 and CuAl0.9Fe0.1O2 thermoelectric ceramics for applications at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号