共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites 总被引:2,自引:0,他引:2
Two kinds of multi-layer CVD SiC coatings were prepared on a three-dimensional C/SiC composite. Oxidation behavior of the coating and the composite were studied and the effect of defects in the coating on its oxidation protection property were investigated. Above 1200 °C, thickness of the oxide film formed on the coating was related to oxidation time by the Fick’s first law X(t)2=Bt, the diffusion rate constant increased with oxidation temperature according to the Arrhenius’ relation ln B=−32?483/T+1.4048. Morphology of the interface between the CVD SiC and its oxide film was different after oxidation at temperatures from 1200 to 1500 °C. It was interpreted by consideration of the interfacial stress produced by thermal expansion mismatch and the CO gas pressure produced by interfacial reaction. 相似文献
5.
6.
Hejun Li Zishan Chen Kezhi Li Qingliang Shen Yanhui Chu Qiangang Fu 《Journal of the European Ceramic Society》2013,33(15-16):2961-2969
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C. 相似文献
7.
《Ceramics International》2022,48(2):1740-1744
A novel SiC coating with a relatively high crack resistance property (crack extension force (GC): 12.0 J·m?2) and outstanding thermal shock resistance was achieved merely by pack cementation. Compared with the conventional SiC coating with Al2O3 addition (AOSC2), SiC coating with Al–B–C additions (ABSC2) possesses refined and denser microstructure owing to different effects in promoting SiC densification under different additions. Therefore, the improvement in microstructures results in superior mechanical capabilities, antioxidation performance (900 °C), and thermal shock resistance (between 1500 °C and room temperature). 相似文献
8.
Changcong Wang Kezhi Li Qinchuan He Yangyang Su Caixia Huo Xiaohong Shi 《Ceramics International》2018,44(14):16365-16378
To improve the high-temperature tolerance of carbon/carbon composites, a compact SiC-nanowires toughened LaB6-MoSi2-SiC/SiC (SiCnws-LMS/SiC) coating was designed and fabricated by combination of multiple methods including pack cementation, chemical vapor deposition and supersonic atmospheric plasma spraying. Isothermal oxidation results indicated that the mass loss of LMS/SiC coating decreased from 4.34?±?0.28% to 1.12?±?0.23% after oxidation for 200?h at 1773?K benefit from the addition of SiCnws. Absence of obvious cracks and voids in the coating after oxidation test indicated that the interfaces between various phases and SiCnws could obstruct the crack propagation by releasing the thermal stress in the coating. Meanwhile, after the introduction of SiCnws, the bonding strength and flexural strength of the coating were respectively increased by 54.54% and 59.77% compared to the LMS/SiC coating without SiCnws. The improved mechanical properties could be attributed to the pullout and bridging effects of SiCnws, which created multi-scaled reinforcements, thereby enhancing the load bearing capacity to increase the fracture toughness of the coating. 相似文献
9.
SiC coating was deposited on carbon/carbon (C/C) composites by chemical vapor deposition (CVD). The effects of elevated temperatures on tribological performance of SiC coating were investigated. The related microstructure and wear mechanism were analyzed. The results show that the as-deposited SiC coating consists of uniformity of β-SiC phase. The mild abrasive and slight adhesive wear were the main wear mechanisms at room temperature, and the SiC coating presented the maximum friction coefficient and the minimum wear rate. Slight oxidation of debris was occurred when the temperature rose to 300?°C. As the temperature was above 600?°C, dense oxide film formed on the worn surface. The silica tribo-film replaced the mechanical fracture and dominated the frication process. However, the aggravation of oxidation at elevated temperatures was responsible for the decrease of friction coefficient and the deterioration of wear rate. The SiC coating presented the minimum friction coefficient and the maximum wear rate when the temperature was 800?°C. 相似文献
10.
In order to exploit the unique high temperature mechanical properties of carbon/carbon (C/C) composites, a new type of oxidation protective coating has been produced by a two-step pack cementation technique in an argon atmosphere. XRD analysis showed that the internal coating obtained from the first step was a gradient SiC layer that acts as a buffer layer, and the multi-layer coating formed in the second step was an Al2O3-mullite layer. It was found that the as-received coating characterized by excellent thermal shock resistance on the surface of C/C composites during exposure to an oxidizing atmosphere at 1873 K, could effectively protect the C/C composites from oxidation for 45 h. The failure of the coating is due to the formation of bubble holes on the coating surface. 相似文献
11.
The oxidation kinetics of carbon/carbon (C/C) composites prepared using a rapid directional diffused (RDD) CVI process were studied. The results showed that the Arrhenius curve for the RDD CVI C/C composites consists of two straight lines, the intercept of which is at about 700 °C at the linear oxidation stage. The oxidation rates are controlled by the surface reaction at 600-700 °C, and the corresponding activation energy is 121 kJ/mol. Between 700 and 800 °C, the oxidation rates are dominated by chemical reaction and diffusion, and the relevant activation energy is 80 kJ/mol. SEM investigation showed that the oxidation starts with original pores on the C/C composite surface with the carbon fiber and matrix oxidized simultaneously. An inexpensive and easily pasted coating containing epoxy organic silicon resin, borates, refractory particulates, etc. was developed. After isothermal temperature, thermal cycle and immersion water oxidation tests, the coating was demonstrated to exhibit good oxidation-resistance properties. The oxidation-resistant mechanism of the coating is discussed. 相似文献
12.
Peipei Wang Mingde Tong Hanhui Wang Hejun Li Yujun Jia Bo Li Yulei Zhang Zhigang Zhao 《Ceramics International》2018,44(17):20968-20973
The gradient HfB2 modified SiC coating was prepared on the surface of SiC-coated C/C composites by in-situ synthesis. Anti-oxidation behaviors of the coated C/C samples at 1773, 1873 and 1973?K were investigated. The results show that the gradient HfB2 modified SiC coatings possess excellent oxidation resistance, which can protect C/C substrates from oxidation for 800, 305 and 100?h at 1773, 1873 and 1973?K, respectively. In addition, with the oxidation temperature increasing, the evaporation of the Hf-Si-O glass layer and the active oxidation of SiC were accelerated, which is the reason for the worst oxidation resistance of the sample at 1973?K among the three temperatures. 相似文献
13.
Jinguo Huang Lingjun Guo Kaijiao Li Ningning Yan Lei Zhou Yunyu Li 《Ceramics International》2021,47(6):8105-8112
Al2O3-modified SiC (AOSC) and Al-modified SiC (ASC) coatings were prepared on carbon/carbon (C/C) composites by one-time pack cementation (PC). Their microstructures and anti-oxidation performances were studied. Compared with ASC coating, AOSC coating shows more conspicuous defects (micro-cracks and holes) and lower densification. ASC coating can offer better oxidation resistance and thermal shock resistance to C/C composites than AOSC coating. Al additive can more efficiently improve the sinterability of SiC, which causes the above results. Besides, Al2O3 oxidation product is more stable than SiO2 (l) of oxidized SiC at 1500 °C based on the thermodynamic analysis. 相似文献
14.
For extending application of TaSi2 in complex coating system, the ablation behavior and thermal protection performance of TaSi2 coating is studied to evaluate its potential applications for anti-ablation protection of C/C composites. TaSi2 coating is prepared by supersonic atmospheric plasma spraying (SAPS) on the surface of SiC coated carbon/carbon (C/C) composites. Phase variation and microstructure are characterized by XRD and SEM, respectively. During the ablation process, the coating is quickly oxidized to SiO2 and Ta2O5 accompanied by a lot of heat consumption. The linear and mass ablation rates are 0.9?µm?s?1 and ??0.4?mg?s?1 after ablation for 80?s, respectively Results show that the prepared coating possesses optimal ablation performance under the heat flux of 2.4?MW/m2. Moreover, the TaSi2 coating and SiC inner coating have good chemical and physical compatibility during the ablation process. Therefore, the excellent performance of TaSi2 coating during the ablation process makes it a candidate for anti-ablation protection for C/C composites. 相似文献
15.
Oxidation microstructure studies of reinforced carbon/carbon 总被引:1,自引:0,他引:1
Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 °C) and arc-jet exposures (1538 °C) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 °C exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. The 800 °C sample showed uniform attack, suggesting reaction control of the oxidation process; whereas the 1100 °C sample showed attack at the edges, suggesting diffusion control of the oxidation process. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 °C. However samples oxidized at 900, 1100, and 1300 °C show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities at the outer edges suggest diffusion control. The cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 °C show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through cracks, creating denuded fibers in and along the cracks. Even at 1538 °C, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing preferentially. 相似文献
16.
《Ceramics International》2017,43(2):1722-1730
To protect carbon/carbon composites (C/Cs) against oxidation, SiC coating toughened by SiC nanowires (SiCNWs) and carbon nanotubes (CNTs) hybrid nano-reinforcements was prepared on C/Cs by a two-step technique involving electrophoretic co-deposition and reactive melt infiltration. Co-deposited SiCNWs and CNTs with different shapes including straight-line, fusiform, curved and bamboo dispersed uniformly on the surface of C/Cs forming three-dimensional networks, which efficiently refined the SiC grains and meanwhile suppressed the cracking deflection of the coating during the fabrication process. The presence of SiCNWs and CNTs contributed to the formation of continuous glass layer during oxidation, while toughed the coating by introducing toughing methods such as bridging effect, crack deflection and nanowire pull out. Results showed that after oxidation for 45 h at 1773 K, the weight loss percentage of SiC coated specimen was 1.35%, while the weight gain percentage of the SiCNWs/CNTs reinforced SiC coating was 0.03052% due to the formation of continuous glass layer. After being exposed for 100 h, the weight loss percentage of the SiCNWs/CNTs reinforced SiC coating was 1.08%, which is relatively low. 相似文献
17.
To protect carbon/carbon (C/C) composites from oxidation at elevated temperature, an effective WSi2-CrSi2-Si ceramic coating was deposited on the surface of SiC coated C/C composites by a simple and low-cost slurry method. The microstructures of the double-layer coatings were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analyses. The coating exhibited excellent oxidation resistance and thermal shock resistance. It could protect C/C composites from oxidation in air at 1773 K for 300 h with only 0.1 wt.% mass gain and endure the thermal shock for 30 cycles between 1773 K and room temperature. The excellent anti-oxidation ability of the double-layer WSi2-CrSi2-Si/SiC coating is mainly attributed to the dense structure of the coating and the formation of stable vitreous composition including SiO2 and Cr2O3 produced during oxidation. 相似文献
18.
Dongju Lee Yun C. Kim Malik Adeel Umer Kwang H. Lim Sang B. Park Soon H. Hong 《Ceramics International》2013
Biomorphic SiC composites were fabricated by infiltration of liquid Si into a preform fabricated from medium-density fiberboard (MDF). The phase compositions, microstructures, oxidation behaviors, and ablation properties of the composites were investigated. The composites were oxidized at elevated temperatures (up to 1450 °C) in air to study their oxidation behavior. Pores and cracks initially formed from the oxidation of residual carbon, followed by melting of residual Si. The ablation resistance of a composite was gauged using an oxy-acetylene torch. The formation of a SiO2 layer by the oxy-acetylene flame improved the ablation resistance because molten SiO2 spread over the ablated surface and partially sealed the pores, thus acting as an effective barrier against the inward diffusion of oxygen. 相似文献
19.
《Ceramics International》2017,43(18):16512-16517
In order to improve the thermal shock resistance of the coated carbon/carbon (C/C) composites, a mullite whisker toughened mullite coating was fabricated on the surface of SiC pre-coated C/C composites (SiC-C/C) by molten-salt method with a later hot dipping process. The phase compositions, surface and cross-section microstructures, high temperature thermal shock resistance of the as-prepared multi-layer coatings were investigated. Results show that the introduction of mullite whiskers can effectively improve the density of the mullite outer coating and decrease the cracking of the coating during the thermal shock cycle process. After 100 times thermal shock cycles between 1773 K and room temperature, only 1.87 × 10−3 g cm−2 weight loss has been detected, indicating the achievement of the excellent thermal shock resistance. 相似文献
20.
To improve the oxidation resistance and alleviate the thermal stress of the HfB2-SiC-Si/SiC coatings for C/C composites, in-situ formed SiC whiskers (SiCw) were introduced into the HfB2-SiC-Si/SiC coatings via chemical vapor deposition (CVD). Effects of SiCw on isothermal oxidation and thermal shock resistance for the HfB2-SiC-Si/SiC coatings were investigated. Results showed that the SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent oxidation resistance for C/C composites with only 0.88% weight loss after oxidation for 468?h at 1500?°C, which was markedly superior to 4.86% weight loss for coatings without SiCw. Meanwhile, after 50 times thermal cycling, the weight loss of the SiCw-HfB2-SiC-Si/SiC coated samples was 4.48%, which showed an obvious decrease compared with that of the HfB2-SiC-Si/SiC coated samples. The SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent adhesion to the C/C substrate and had no penetrating cracks after oxidation. The improved performance of the SiCw-HfB2-SiC-Si/SiC coatings could be ascribed to the SiCw, which effectively relieved CTE mismatch and remarkably suppressed the cracks through toughening mechanisms including whiskers pull-out and bridging strengthening. The above results were confirmed by thermal analysis based on the finite element method, which demonstrated that SiCw could effectively alleviate thermal stress generated by temperature variation. Furthermore, the SiCw-HfB2-SiC-Si/SiC coating can provide a promising fail-safe mechanism during the high temperature oxidation by the formation of HfSiO4 and SiO2, which can deflect cracks and heal imperfections. 相似文献