共查询到18条相似文献,搜索用时 93 毫秒
1.
行星齿轮箱是风电机组中的重要部件,对风电机组的安全可靠运行具有重要意义。为此,提出一种基于深度特征融合网络的行星齿轮箱故障诊断方法,用于实现变速工况、样本不足和强噪声场景下的故障诊断。首先将原始信号扩展到多个特征域。其次利用多维堆栈稀疏自编码器提取各域特征。最后针对传统Softmax分类器对融合信息分类能力不足的问题,提出基于竞争粒子群算法优化的回声状态网络进行特征融合并输出诊断结果。经多场景不同故障诊断方法对比实验,所提方法在行星齿轮箱变速工况下分类效果良好,并对训练样本的减少和外界噪声有很强的鲁棒性。 相似文献
2.
针对现有的大多数深度迁移学习方法只能在目标转速下工作,而且在模型的训练中总是需要目标域样本的问题,研究风电机组行星齿轮箱在变工况下的故障诊断方法,设计了应用于变工况下行星齿轮箱故障诊断的深度残差半监督域泛化网络,将诊断模型推广到未知转速的故障诊断任务中。首先对振动信号进行Fast Kurtogram时频变换,生成图像并构造样本集;其次模拟实际情况,以含标签源域样本集和无标签源域样本集为输入,使用深度残差网络提取深层故障特征,并引入对抗博弈机制和基于伪标签的半监督学习方法对网络进行训练;最后根据训练后的网络搭建了域泛化故障诊断模型,利用行星齿轮箱故障诊断实验进行评估。实验结果表明,所设计的网络可以有效利用定速样本实现对未知转速样本和变速样本的故障识别,对目标域的平均识别率达到95.24%。 相似文献
3.
4.
针对行星齿轮箱振动信号相互耦合和故障诊断不准确等问题,提出一种基于特征融合与深度残差网络(ResNet)的行星齿轮箱故障诊断方法。首先,对采集到的行星轮裂纹、磨损,太阳轮断齿及复合故障等模拟故障振动信号应用多维集成经验模态分解(MEEMD)和VMD进行分解,分别筛选确定有效分量。然后,将筛选出的有效特征进行融合,分别应用传统卷积神经网络(CNN)和深度残差网络对其进行分类识别。结果发现,深度残差网络,分类准确度更高,可达95%以上。最后,应用深度残差对特征融合前后数据的分类准确度进行了比较。融合前准确度最高只达91.16%,低于融合的97.18%。可见,该方法对行星齿轮箱耦合振动信号的处理和故障诊断非常有效。 相似文献
5.
风力发电机组行星齿轮箱振动信号是一种非线性非平稳的复杂信号,传统的故障诊断方法面对此类信号时,能够很好地处理的范围有限.建立了卷积深度信念网络用于行星齿轮箱故障诊断,为了防止超参数选择有误造成识别的准确率不够,引入粒子群算法对网络的超参数进行优化,对粒子进行混沌初始化提高了粒子的全局搜索能力.首先将原始信号进行变分模态... 相似文献
6.
行星齿轮箱故障诊断的幅值解调分析方法 总被引:2,自引:0,他引:2
齿轮故障的调幅调频效应以及振动传递路径的变化使得行星齿轮箱振动信号频谱具有复杂的边带结构.调幅部分包含齿轮故障信息.为了简化诊断分析,根据行星齿轮箱振动信号的调幅特点,提出了幅值解调分析方法.推导了包络谱的解析表达式,总结归纳了太阳轮、行星轮和齿圈故障振动信号包络谱的频率结构特点.通过行星齿轮箱故障实验信号分析验证了上述理论分析结果,基于包络谱诊断出了太阳轮、行星轮和齿圈的局部损伤故障. 相似文献
7.
风力发电机组行星齿轮箱振动信号是一种非线性非平稳的复杂信号,传统的故障诊断方法面对此类信号时,能够很好处理的范围有限.为提高在强外界干扰条件下故障智能识别的准确率,提出了一种基于一维卷积神经网络(1D-CNN)和长短期记忆网络(LSTM)混合模型的故障智能诊断方法.首先利用自参考自适应噪声消除技术(SANC)将齿轮箱振动信号分离为周期性信号分量成分和随机信号分量成分,再对包含齿轮箱故障特征的周期性信号成分进行智能特征提取和识别.经验证,所提方法较其他不同方法有明显优势,故障识别率达到99.85%,说明能有效抑制干扰信号,提高故障识别的准确率. 相似文献
8.
以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解(variational mode decomposition, VMD)及粒子群算法(particle swarm optimization, PSO)优化支持向量机(support vector machine, SVM)的故障诊断方法。首先,对信号进行VMD分解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入PSO优化SVM的关键参数,将提取的特征向量输入PSO-SVM进行训练和识别。将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。 相似文献
9.
为提高小样本条件下变压器故障诊断的准确率,提出了一种小样本条件下基于卷积孪生网络CSNN(con-volutional Siamese neural network)的变压器故障诊断方法.利用具有强大特征提取能力的卷积层和池化层来构建孪生网络将原始数据映射到低维空间.并基于欧式距离进行相似度的对比,从而实现故障的分类.... 相似文献
10.
行星轮的通过效应或行星架和太阳轮的旋转对啮合振动产生额外的调幅作用,导致横向振动信号的频谱结构非常复杂。扭转振动信号不受这些额外调幅效应的影响,它们的频谱结构更加简单。因此,扭转振动信号分析为行星齿轮箱故障诊断提供了一种有效方法。建立了行星齿轮箱扭转振动信号模型,推导了Fourier频谱、幅值解调谱和频率解调谱的解析表达式,总结了上述频谱的结构特点。应用故障实验数据验证了上述理论分析结果。 相似文献
11.
针对风电机组滚动轴承故障特征微弱、提取困难、诊断效率低下等问题,提出一种基于改进卷积神经网络(Convolution Neural Network,CNN)的故障诊断算法.改进CNN模型结构,在全连接层前增加新的卷积层,挖掘信号的深层特征以提高模型的泛化能力.对卷积层数据进行批归一化处理,采用带有动量的随机梯度下降训练... 相似文献
12.
A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network 下载免费PDF全文
The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability.
Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of
large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and
the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be
conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some
features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained
in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer
learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a
modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration
signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network
is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of
transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the
effectiveness and the reliability of both the dynamic model and the proposed method. 相似文献
13.
针对分布式场景下单节点样本有限、多节点间工况分布不平衡等导致的深度学习故障诊断精度低的问题,提出一种多小波系数增强动态聚合联邦深度网络用于分布式小样本下的多工况机械故障诊断。提出多小波系数增强动态聚合联邦深度网络的诊断框架,单终端节点从本地样本中提取小波系数特征,提出多小波系数深度网络融合的特征增强方法,局部模型从多样性小波系数集合中提取更具判别性故障特征;聚合节点通过对多终端节点局部模型的聚合以构建全局联邦深度网络模型,并用于多工况故障诊断;为降低多节点间数据非独立同分布的影响,提出平衡模型贡献度的联邦动态加权聚合算法。轴承振动数据分析结果表明,所提方法能在分布式小样本条件下实现高精度的多工况故障诊断。 相似文献
14.
针对高压断路器故障现有故障诊断算法中,特征提取不准确导致分类正确率较低的问题,提出了基于深度信念网络的高压断路器故障识别方法。深度信念网络(Deep Belief Network,DBN)是非监督的深度神经网络,由多个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)叠加起来组成。首先使用无标签的数据样本自下而上的对各RBM层逐层训练,得到各层最优参数;再以此为初始参数将DBN展开成反向传播的结构,使用带标签的数据样本进行全局的参数微调;最后得到DBN分类网络。这一过程中,有效避免了特征提取的人工操作,解决了网络训练的局部最优问题,使断路器故障诊断更加智能化。通过试验结果可知,该方法可准确、可靠地用于诊断断路器主要机械故障。 相似文献
15.
安全稳定控制系统(安控系统)控制节点多,控制链条长,若因故障导致拒动或者误动,将给电网的运行造成严重危害。安控系统的故障诊断是电力系统安全稳定运行的基础。现有安控系统的故障诊断主要依赖于技术人员依据通信报文辅助判别异常原因,难以对安控系统各个环节故障进行实时诊断。为此,分析了安控系统故障的存在环节和产生原因,提取了安控系统故障特征量;进而建立了基于深度置信网络的安控系统故障诊断模型,提出了安控系统故障诊断方法;最后选取安控系统运行故障样本,验证了故障诊断方法的正确性。 相似文献
16.
传统的深度信念网络规模大、难度大、训练时间长,导致其故障诊断的时间较长。针对该问题,提出了一种基于贝叶斯正则化深度信念网络的电力变压器故障诊断方法。采用贝叶斯正则化算法改进传统深度信念网络的训练性能函数,在保证网络精度的同时快速提高计算速度,从而提高网络的收敛速度。实验结果表明,经过贝叶斯正则化改进后,深度信念网络训练的泛化能力得到了提高,同时故障诊断的准确率也得到了保证。 相似文献
17.
针对滚动轴承在多工况条件下故障特征难以识别的问题,从数据驱动的角度出发应用一维多尺度密集网络(MSDNet)对轴承进行故障诊断。首先,将时域信号作为MSDNet的直接输入,保持了信号本有的固有特性;其次采用3个并行卷积操作来提取轴承故障信号内部的多尺度信息,密集网络的加入防止了信息传递过程中的特征丢失,适当缓解了模型中的梯度消失问题;然后训练过程中采用Adabelief优化算法优化模型参数,使得模型在快速收敛的同时又提高了其泛化性能;最后通过混淆矩阵和特征可视化图展示出模型的分类性能,在凯斯西储大学轴承实验数据集和西安交通大学数据集上进行了多次实验,应用该算法故障识别率可达到98%以上,证明了该方法的有效性。 相似文献
18.
提出了一种基于多维特征和多分类器的水电机组故障诊断方法。通过提取水电机组不同状态下振动信号的时域特征、频域特征和集合经验模态分解-样本熵,构建多维特征,实现特征信息的多维互补,并利用遗传算法对构建的多维特征进行降维处理。以此多维特征作为分类器的输入,分别通过支持向量机、反向传播神经网络和朴素贝叶斯分类器进行故障诊断,将三种分类器的初步诊断结果进行融合得到最终诊断结论,从而提高水电机组故障诊断的准确率。为验证该方法的有效性,将转子不平衡、转子不对中、转子碰磨等故障在转子试验台上进行模拟,并用上述方法进行诊断,结果表明,较单维特征和单分类器,多维特征输入和多分类器融合的故障诊断准确率更高。 相似文献