首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanum La-substituted multiferroic Bi1−xLaxFeO3 ceramics with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared by solution combustion method. The effect of La substitution for the dispersion studies on dielectric and ferroelectric properties of Bi1−xLaxFeO3 samples have been studied by performing x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), density, dc resistivity and dielectric measurements as well as characterizing the polarization-field hysteresis loop. The results of prepared samples are compared with those of bismuth ferrite (BiFeO3). In the measuring frequency of 10 KHz to 1 MHz, the dielectric constants and dielectric losses for samples x = 0.20, 0.25 are almost stable and exhibited lowest dielectric loss close to 0.1. The resistivity of Bi1−xLaxFeO3 samples reaches a maximum value of 109 ohm-cm, which is about three times higher than that for pure BiFeO3. The results also show that stabilization of crystal structure and nonuniformity in spin cycloid structure by La substitution enhances the resistivity, dielectric and ferroelectric properties. Furthermore, the substitution of rare earth La for Bi helps to eliminate the impurity phase in BiFeO3 ceramic.  相似文献   

2.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

3.
Effect of Ce and La substitution on the microstructure and dielectric properties of bismuth titanate (BT) ceramics was investigated. Bismuth titanate ceramics (Bi4−xAxTi3O12) (A = Ce or La; x = 0, 0.5, 1) were processed by sintering of pressed pellets, prepared from nanopowder synthesized by the modified sol-gel method. Pure and La modified bismuth titanate ceramics have single Bi4Ti3O12 phase of Aurivillius type, whereas a small amount of Bi2Ti2O7 pyrochlore phase appears in Ce modified bismuth titanate ceramics. In the same time addition of La and Ce improved sinterability of BT ceramics. The results of the measurement of dielectric constant and loss tangent at different frequencies (100 Hz-1 MHz) as a function of temperature reveal that Ce modified ceramics has a diffuse phase transition. Temperature Tm, corresponding to the maximum value of the dielectric constant, is shifted to higher temperature and the maximum value of the dielectric constant is decreased with increasing frequency, which indicate that relaxor behavior is caused by Ce substitution.  相似文献   

4.
《Ceramics International》2017,43(16):13193-13198
B-site modified Bi3.25La0.75Ti3-xTaxO12 ceramics were prepared by the conventional solid-state reaction method. The influence of Ta2O5 on microstructure and electric properties of the ceramics was investigated. The results demonstrated that Ta5+ ions were dissolved into the perovskite lattice and homogeneously distributed in the matrix without forming any minority phase. The conduction mechanism and dielectric response behavior were transformed with Ta substation, which is triggered by varied structural distortion characteristics and defect diploes. The Curie temperature decreased gradually with increasing Ta content and a relaxor-like behavior was observed for x = 0.09 sample. The internal bias field is decreased with Ta doping, because the substitution of Ta5+ at B-site contributes to release the involved oxygen vacancies in defect diploes. Moreover, further increasing Ta content causes a reduction in the oxygen vacancies located at lattice misfits, resulting in a decrease of coercive fields. An improved ferroelectric properties were obtained for x = 0.09 sample with a relatively lower coercive field and a larger spontaneous polarization.  相似文献   

5.
《Ceramics International》2017,43(18):16531-16538
We have studied Ho-doped BiFeO3 nanopowders (Bi1−xHoxFeO3, x = 0–0.15), prepared via sol-gel method, in order to analyse the effect of substitution-driven structural transition on dielectric and ferroelectric properties of bismuth ferrite. X-ray diffraction and Raman study demonstrated that an increased Ho concentration (x ≥ 0.1) has induced gradual phase transition from rhombohedral to orthorhombic phase. The frequency dependent permittivity of Bi1−xHoxFeO3 nanopowders was analysed within a model which incorporates Debye-like dielectric response and dc and ac conductivity contributions based on universal dielectric response. It was shown that influence of leakage current and grain boundary/interface effects on dielectric and ferroelectric properties was substantially reduced in biphasic Bi1−xHoxFeO3 (x > 0.1) samples. The electrical performance of Bi0.85Ho0.15FeO3 sample, for which orthorhombic phase prevailed, was significantly improved and Bi0.85Ho0.15FeO3 has sustained strong applied electric fields (up to 100 kV/cm) without breakdown. Under strong external fields, the polarization exhibited strong frequency dependence. The low-frequency remnant polarization and coercive field of Bi0.85Ho0.15FeO3 were significantly enhanced. It was proposed that defect dipolar polarization substantially contributed to the intrinsic polarization of Bi0.85Ho0.15FeO3 under strong electric fields at low frequencies.  相似文献   

6.
《Ceramics International》2017,43(8):6446-6452
New lead-free inter-growth piezoelectric ceramics, Na0.5Bi8.5-xLaxTi7O27 (NBT-BIT-xLa, 0.00≤x≤1.00), were prepared by the conventional solid-state method. Structural and electrical properties of NBT-BIT-xLa were studied. All the NBT-BIT-xLa samples exhibited a single inter-growth structured phase. XRD and Raman spectroscopy revealed a reduced orthorhombicity, which strongly supports the variation of dielectric and ferroelectric properties. Plate-like grains were found to decrease with the increasing x contents. Impedance spectra analysis indicated that oxygen vacancy defects dominated the contributions to the electrical conductivity. The increased activation energies for dc conductivity evidenced the reduction of oxygen vacancy concentration after La substitution, inducing the enhancement in piezoelectric constant (d33) and remanent polarization (2Pr). The studies of thermal depoling indicated that the optimal d33 of NBT-BIT-0.50La ceramics still remained 22 pC/N at 500 °C, implying that this ceramics could be potentially applied into high temperature devices.  相似文献   

7.
In this work, [(Bi1-xLax)0.5Na0.5]0.94Ba0.06(Ti1-5y/4Nby)O3 ceramics have been developed by the dual-substitution of La3+ for Bi3+ and Nb5+ for Ti4+ and prepared by an ordinary sintering technique. All ceramics can be well-sintered at 1200 °C. The addition of La3+ and Nb5+ reduces the grain size and improve the dielectric breakdown strength of the ceramics; moreover, after the introduction of La3+ and Nb5+, the remanent polarization of the ceramics is significantly reduced, while the maximum polarization remains the same large value as that of the ceramic without the doping of La3+ and Nb5+. As a result, high energy storage density and discharge efficiency are achieved at x/y = 0.07/0.02, giving the large storage density of 1.83 J/cm3 and high discharging efficiency of 70%. The present work presents a feasible strategy to develop energy storage materials based on perovskite ferroelectrics by the partial substitutions in the A and B sites.  相似文献   

8.
With growing concerns over environmental protection, lead-free dielectric ceramic capacitors are attracting much attention. In this work, a series of novel (1-x) Na0.5Bi0.5TiO3-x Ba5LaTi3Ta7O30 ((1-x)NBT-xBLTT) dielectric composite ceramics were fabricated by a traditional solid‐state method. All the samples possess a compact microstructure with refined grain morphology with increasing BLTT content, and tend to exhibit a diphase dielectric composite as x reaches up to 0.05. Furthermore, the addition of BLTT enhances the dielectric relaxor behavior of NBT-based ceramics, such that the x = 0.15 composite ceramic exhibits a typical feature of relaxor ferroelectrics. As a result, a high recoverable energy-storage density of Wrec~3.67 J/cm3, an ultrahigh energy-storage efficiency of η~97.3%, and a high power density of PD~333 MW/cm3 can be simultaneously obtained in the x = 0.15 relaxor composite ceramic. This study provides an alternative way to design excellent energy-storage performances in NBT-based compositions through constructing dielectric relaxor composites via introducing non-polar tungsten bronze oxides.  相似文献   

9.
《Ceramics International》2019,45(12):14873-14879
Rapid liquid-phase sintering method has been modified and used to synthesize Bi1-xLaxFeO3-δ compositions (0 ≤ x ≤ 0.5). The temperature and sintering procedures to obtain stable single-phase samples have been defined. This provides a significant reduction in the synthesis time, which is especially important for mass production. Furthermore, giant dielectric constants have been observed in Bi1-xLaxFeO3-δ compositions, the values of which are one order of magnitude larger than those of similar Bi-based multiferroics obtained by conventional methods. It potentially makes them one of the most promising materials for modern technological applications.  相似文献   

10.
《Ceramics International》2017,43(10):7922-7928
The emergence of ferromagnetism in perovskite oxide LaFeO3 nanoparticles and colossal dielectric response in ceramics has inspired researchers to study the effect of various dopants on the magnetic and dielectric properties of LaFeO3 powders and ceramics. However, the influence of alkali element Na doping has not been studied yet, and the origin of such ferromagnetic behavior is still ambiguous. The primary objective of the present work is to elucidate the effect of Na doping on the magnetic properties of La1−xNaxFeO3 (x=0, 0.1 and 0.2) powders and dielectric properties of corresponding ceramics prepared by citric sol-gel method. FE-SEM results showed that the introduction of Na dopant actually resulted in the formation of nonstoichiometric La1−xFeO3 and x/2 Na2O. Compared to the canted AFM behavior for the pure powder, ferromagnetic behavior with enhanced magnetization of 2.11 emu/g at 10 kOe could be obviously observed at room temperature for the powder with x=0.2. XPS measurement suggested nonstoichiometric Fe/La ratio which leads to the distortion of lattice structure and enlarged canting angle between the two AFM coupled Fe sublattice should be responsible for the enhancement of magnetization in the Na-doped samples. Meanwhile, the introduction of Na dopant lowered the growth temperature of grains of the parent LFO and resulted in larger average grain size, which in turn leaded to great enhancement of ε′ into the order of 105 at 100 Hz at the cost of high tanδ for the Na-doped ceramics.  相似文献   

11.
Polycrystalline Bi1?xErxFeO3 ceramics were synthesized by the solid state reaction method followed by rapid liquid phase sintering. The effects of Er substitution on the structure, morphology and electrical properties of the BiFeO3 multiferroic ceramics were investigated. X-ray diffraction and Raman studies reveal that the structure of BiFeO3 is changed from rhombohedral to orthorhombic in the Er concentration range of 0.10–0.15, and the impurity phases decrease both due to Er substitution. The X-ray photoelectron spectroscopy shows that Fe2+ could be suppressed by Er substitution. The SEM investigations suggest that the Er substitution could significantly reduce the grain sizes and increase the density of the samples. The leakage current is found to be decreased with increasing Er concentration. The dielectric and ferroelectric measurements show that dielectric constant, dielectric loss and ferroelectric properties are strongly dependent on the Er concentration. Er substitution can significantly improve the dielectric constant and remnant polarization, and decrease the dielectric loss by reducing the leakage current.  相似文献   

12.
《Ceramics International》2020,46(2):1940-1946
Ba0.7Sr0.3Ti0.9925Tm0.01O3 (BST) and core-shell structured BST@BiScO3 ceramics were prepared via a sol-precipitation and conventional sintering method. The single perovskite structure of the BST@BiScO3 ceramic powder and bulk materials were confirmed via X-ray diffraction. Additionally, transmission electron microscopy analysis revealed that the surface of the BST powder was successfully coated in situ with amorphous BiScO3 nanoparticles. Scanning electron microscopy analysis indicated that the grain sizes of the BST@x mol.% BiScO3 (x = 1, 2, 3) ceramics decreased with increasing coating amounts. For x = 4 mol.%, the grain size of the BST@BiScO3 ceramic significantly increased relative to that of BST@x mol.% BiScO3 (x = 1, 2, 3), and some smaller particles were found to have precipitated. The results revealed that the dielectric constants of the BST@BiScO3 ceramics decreased at room temperature, but remained above 10000, and that the dielectric loss was significantly reduced. In addition, the Curie peak of BST@x mol.% BiScO3 (x = 1, 2, 3, 4) broadened and shifted to a higher temperature. The Curie peak of the BST@4 mol.% BiScO3 ceramic material was nearly a flat line. In this work, dielectric materials with high dielectric constants and low dielectric losses were successfully prepared; thus, they met the requirements of miniaturization and temperature stability for dielectric ceramics.  相似文献   

13.
The bismuth layer-structured Na0.5Bi4.5-xPrxTi4O15 (x?=?0, 0.1, 0.2, 0.3, 0.4, and 0.5) (NBT-xPr3+) ceramics were fabricated using the traditional solid reaction process. The effect of different Pr3+ contents on dielectric, ferroelectric and piezoelectric properties of Na0.5Bi4.5Ti4O15 ceramics were investigated. The grain size of Pr3+-doping ceramics was found to be smaller than that of pure one, the maximum dielectric constant and Curie temperature Tc gradually decreased with increasing Pr3+ contents, and the dielectric loss decreased at high temperature by Pr3+-doping. Moreover, the activation energy (Ea), resistivity (Z’), remanent polarization (2Pr) and piezoelectric constant (d33) increased by Pr3+-doping. The NBT-xPr3+ ceramics with x?=?0.3 achieved the optimal properties with the maximum dielectric constant of 1109.18, minimum loss of 0.00822 (250?kHz), Ea of 1.122?eV, Z’ of 7.9?kΩ?cm (725 ºC), d33 of 18 pC/N, 2Pr of 12.04 μC/cm2. The enhancement was due to the addition of Pr3+ which suppressed the decreasing of resistivity at high temperature and made it possible for NBT-xPr3+ ceramics to be poled in perpendicular direction, implying that it is a great improvement for Na0.5Bi4.5Ti4O15 ceramics in electrical properties.  相似文献   

14.
《Ceramics International》2017,43(18):16580-16592
Structural phase transition from rhombohedral (space group: R3c) to orthorhombic (space group: Pnma) cell is observed in Bi1-xSmxFeO3 (x = 0 – 0.3) compounds. The evolution of non-ferroelectric Pnma phase reduces the dielectric strength and stabilizes the collinear antiferromagnetism. Temperature variations of dielectric permittivity and its loss component show the presence of Polomska transition and it is found to shift downward towards room temperature with increase in Sm concentration. The frequency dispersion of complex dielectric permittivity was best explained in terms of Havriliak-Negami equation and by invoking the conductivity contribution. The Cole-Cole plots of complex dielectric permittivity show two distinct semicircular arcs corresponding to dielectric relaxation due to grains and grain boundaries respectively. The relaxation dynamics is explained in terms of polaron hopping across Fe2+ and Fe3+ sites in grains and short range movement of oxygen vacancies at grain boundaries. The composition dependence of magnetization is explained in terms of evolution of weak ferromagnetism due to partial breaking of spiral spin structure and the growth of collinear antiferromagnetism driven by Pnma phase. We have also observed the exchange bias behavior in some of Sm substituted samples due to the exchange interaction at the interface of coexisting weak ferromagnetic (R3c) and collinear antiferromagnetic (Pnma) phases.  相似文献   

15.
Lead-free (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramics (x = 0–0.9) are fabricated by solid state reaction process. XRD analysis shows the symmetry divergence from tetragonal to orthorhombic phase accompanied by morphotropic phase boundary with increasing strontium content. Raman spectra confirm the incorporation of strontium into (Bi2.5Na0.5Ti4O13)2- layers. SEM graphs exhibit the typical plate-like morphology with regular variation of grain size and crystallization as strontium increases. Multistage ferroelectric transition is observed with x = 0.2–0.4. Piezoelectric performance measurements present the well thermal stability at x = 0.4. The dielectric properties display a shifting of Curie temperature towards low temperature with increasing strontium ions. It can be due to the crystal lattice distortion by larger radius of strontium and the increasing tolerance factor. ac conductivity and impedance measurements suggest that electron hopping mainly contributes to the low temperature region. Ionization conductivity by oxygen vacancy migration including first-ionization and double-ionization plays the dominating role in the middle and high temperature region. The controllable properties indicate the potential applications for electric devices of (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramic.  相似文献   

16.
The effects of La concentration on the electrical conductivity and electric modulus of Y2/3?xLaxCu3Ti4O12 ceramics (0.00 ≦ x ≦ 0.20) were investigated in detail. Proper amount of La substitution in Y2/3?xLaxCu3Ti4O12 ceramics made the dielectric loss decreased. When = 0.10, Y2/3?0.10La0.10Cu3Ti4O12 ceramics exhibited the highest grain‐boundary resistance (0.893 MΩ) and the lowest dielectric loss (about 0.025 at 1 kHz), meanwhile the samples exhibited a relatively high dielectric constant above 6000 over a wide frequency range from 40 Hz to 1 MHz. The decreased dielectric loss was attributed to the enhanced grain‐boundary resistance. With the increase in La concentration, the dielectric relaxation behaviors correlated with the grain‐boundary effects were significantly enhanced. By La doping, the activation energies for the conduction in grain boundaries were slightly depressed, and the activation energies for the relaxation process in grain boundaries were slightly changed. Based on the activation values, it can be concluded that the doubly ionized oxygen vacancies had substantial contribution to the conduction and relaxation behaviors in grain boundaries.  相似文献   

17.
The rapid development of high technology—such as space exploration and electric vehicles—urgently requires ultra-wide temperature multilayer ceramic capacitors (UWT MLCCs) to achieve reliable operation of electronic circuits in harsh environments. However, simultaneously achieving high dielectric permittivity, low dielectric loss, and ultrahigh thermal stability has been a major challenge for practical dielectric ceramics. The co-firing matching of the internal electrode and the dielectric ceramic is also an important factor that affects the reliability of UWT MLCCs. Herein, through multifaceted modification—i.e., composition design related to the modulation of the local polar nanoregions (PNRs) and optimizing device sintering in the context of the compatibility of the heterogeneous interface—these concerns have been well-addressed. A new lead-free dielectric system (1-x) (0.56Na0.5Bi0.5TiO3-0.14K0.5Bi0.5TiO3-0.3NaNbO3)-xCaZrO3 (NKBTNN-xCZ) dominated by P4bm PNRs was designed and corresponding UWT MLCCs with reliable Pt internal electrode interface bonding were fabricated by optimizing the sintering temperature. A record-high dielectric permittivity (εr = 839 ± 15 %) and low dielectric loss (tanδ ≤0.02) was achieved over an ultra-wide temperature range from -70 °C to 337 °C for NKBTNN-0.063CZ UWT MLCCs. This work suggests that multifaceted modification should be generalized for construction of high-performance UWT MLCCs.  相似文献   

18.
A series of Tl?+?Nb co-doped TiO2 ceramics ((Tl0.5Nb0.5)x%Ti1-x%O2 0.5?≤?x?≤?10.0) were prepared by a solid-state reaction method under N2 atmosphere. The evolution of their microstructures, and dielectric properties were systematically studied. The co-doped ceramics exhibited a tetragonal rutile structure wherein the Nb and Tl elements were homogeneously distributed. The cell volumes, grain size, and permittivity increased with doping x, whereas the impedance values of the grain and grain boundary decreased with an increasing x. The optimum dielectric performance (εr >?104, tanδ?<?0.05) in the range of 10–106 Hz was obtained for x?=?1.5 with a corresponding grain boundary active energy of 0.86?eV. Four types of dielectric relaxation were observed at different temperature ranges: 10–30?K, 30–200?K, 200–350?K and 350–475?K; those dielectric relaxtions were respectively caused by electron-pinned defect-dipoles, electron hopping, oxygen vacancy hopping, and Maxwell–Wagner polarization. The colossal permittivity is primarily a result of the electron-pinned defect-dipole polarization.  相似文献   

19.
《Ceramics International》2021,47(23):32747-32755
To investigate the nonstoichiometric effect of (Bi0.5Na0.5)TiO3 (BNT) ceramics on their properties, we propose a novel chemical expression, (Bi0.5+xNa0.5−3x)TiO3. The nonstoichiometric effect of BNT can be explored in compounds with this composition without being hampered by the charge imbalance problem. With x ranging from −0.02 to 0.02, we find that the morphological, dielectric, ferroelectric, and electrostrain properties differ considerably between Na-rich and Bi-rich ceramic samples. The average grain size (AGS) increased significantly in Na-rich samples compared to that in stoichiometric BNT, while it decreased slightly in Bi-rich samples. The dielectric characteristics measured from 30 °C to 500 °C indicate that conductivity is activated in Na-rich nonstoichiometric samples but is effectively suppressed in Bi-rich nonstoichiometric samples. The ferroelectric properties also show the same trend. In Na-rich samples, elliptical polarization against electric field (P-E) hysteresis loops were detected, indicating a conductive character induced by high electric field loading. However, saturated P-E loops are observed in Bi-rich samples with well-inhibited conductivity. Furthermore, compared to stoichiometric BNT and nonstoichiometric x = 0.02 Bi-rich samples, (Bi0.5+xNa0.5−3x)TiO3 samples with x = 0.01 exhibit higher electrostrain from 30 °C to 150 °C. Based on the assumption of charge balance, our findings indicated that the presence of 1 mol% excess Bi would facilitate significant improvement in the dielectric, ferroelectric, and electrostrain properties of BNT and BNT-based systems.  相似文献   

20.
A series of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 (BNT-BST-100xNN) lead-free ceramics were fabricated using conventional solid-state reaction technique. The phase behavior, microstructure, dielectric, ac impedance and energy-storage properties of the sintered ceramics were systematically investigated. XRD patterns and surface SEM micrographs revealed the introduction of NaNbO3 didn't change the perovskite structure of BNT-BST at low doping level. The NaNbO3 doping gave rise to slimmer P-E loops and thus gained enhanced energy storage properties. Therefore, a maximum energy storage density of 1.03 J/cm3 was achieved at 85 kV/cm at x = 0.01 via increasing the dielectric breakdown strength (DBS). Temperature-dependent dielectric permittivity illustrated the enhanced relaxor characteristics, implying the long-rang ferroelectric order was further damaged due to the introduction of NaNbO3. The results above indicate the sintered ternary ceramics can be a promising lead-free candidate for energy storage capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号