首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(5):6288-6295
In this study, ASTM Class C fly ash used as an alumino-silicate source was activated by metal alkali and cured at low temperature. Basalt fibers which have excellent physical and mechanical properties were added to fly ash-based geopolymers for 10–30% solid content to act as a reinforced material, and its influence on the compressive strength of geopolymer composites has been investigated. XRD study of synthesized geopolymers showed an amorphous phase of geopolymeric gel in the 2θ region of 23°–38° including calcium-silicate-hydrate (C-S-H) phase, some crystalline phases of magnesioferrite, and un-reacted quartz. The microstructure investigation illustrated fly ash particles and basalt fibers were embedded in a dense alumino-silicate matrix, though there was some un-reacted phase occurred. The compressive strength of fly ash-based geopolymer matrix without basalt fibers added samples aged 28 days was 35 MPa which significantly increased 37% when the 10 wt%. basalt fibers were added. However, the addition of basalt fibers from 15 to 30 wt% has not shown a major improvement in compressive strength. In addition, it was found that the compressive strength was strong relevant to the Ca/Si ratio and the C-S-H phase in the geopolymer matrix as high compressive strength was found in the samples with high Ca/Si ratio. It is suggested that basalt fibers are one of the potential candidates as reinforcements for geopolymer composites development.  相似文献   

2.
This research has investigated the mechanical properties and microstructure of metakaolin derived geopolymer mortars containing 50% by weight of silica sand, after exposure to temperatures up to 1200 °C. The compressive strength, porosity and microstructure of the geopolymer mortar samples were not significantly affected by temperatures up to 800 °C. Nepheline (NaAlSiO4) and carnegieite (NaAlSiO4) form at 900 °C in the geopolymer phase and after exposure to 1000 °C the mortar samples were transformed into polycrystalline nepheline/quartz ceramics with relatively high compressive strength (~275 MPa) and high Vickers hardness (~350 HV). Between 1000 and 1200 °C the samples soften with gas evolution causing the formation of closed porosity that reduced sample density and limited the mechanical properties.  相似文献   

3.
Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties.  相似文献   

4.
Two series of raw materials were adopted to form TiAl/Ti2AlC composites: Ti/Al/TiC and Ti/Al/C. Differential thermal analysis (DTA) of starting powers and X-ray diffraction (XRD) of samples sintered at different temperatures from 600 °C to 1300 °C by hot pressing were utilized to analyze the phase transformation and the mechanism of synthesis. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) was utilized to investigate the morphology characteristics of the products. The experimental results showed that Ti reacted with Al to form TiAl intermetallics below 900 °C; and above 900 °C, TiAl reacted with TiC to produce dense TiAl/Ti2AlC composites. The products sintered at 1200 °C had fine crystals and dense fibres, and the distribution of Ti2AlC particles in TiAl matrix was homogeneous.  相似文献   

5.
《Ceramics International》2017,43(18):16063-16069
Our previous research paper on geopolymer-mullite composites showed promising results on compressive strength and fire resistance. However, no improvement in thermal shock resistance was observed in the afore mentioned study. In this study, further attempts to improve thermal shock resistance of the geopolymer were explored. The research was performed by compositing a fly ash-based geopolymer with cordierite-mullite at 20, 40 and 60 wt% replacement. X-ray diffraction (XRD) of the cured geopolymer composite specimens showed the existence of cordierite, mullite, quartz, cancrinite and lazurite. It was found that compressive strength and strength retention after thermal exposure at 400 °C were improved in the geopolymer composite specimens, especially those with 20–40 wt% replacement. Upon further heating to 600 °C, all geopolymer specimens showed insignificant differences in compressive strength. Fire resistance was found to improve with increasing proportion of replacement contents.  相似文献   

6.
The geopolymers were prepared from sodium silicate, metakaolinite, NaOH and H2O at SiO2:Al2O3:Na2O:H2O of 3.66:1:1:x, where x = 8–17, and curing temperatures of 70–110 °C. Since the bending strength of the geopolymers was highest (36 MPa) where H2O/Al2O3 = 9 and the curing temperature = 90 °C, these conditions were adopted. The porous geopolymers were prepared by kneading PLA fibers of 12, 20 and 29 μm diameter into the geopolymer paste, at fiber volumes of 13–28 vol%. The resulting paste was extruded using a domestic extruder, cured at 90 °C for 2 days then dried at the same temperature. The PLA fibers in the composites were removed by alkali treatment and/or heating. The highest capillary rise was achieved in the porous geopolymers containing 28 vol% of 29 μm fibers. The capillary rise of this sample, estimated by the equation of Fries and Dryer1 was 1125 mm.  相似文献   

7.
A mixture of Fe2O3 and TiO2 oxides has been mechanically milled to form TiFe2O4 spinel phase. X-ray diffraction (XRD) pattern of the as-milled mixture shows the presence of both Fe2O3 and TiO2 phases. The diffraction peaks become broader and their relative intensity drastically decreases due to the particle size reduction and accumulation of strains. The milled powder was then subjected to annealing at different temperatures (600, 750, 900, 1200 °C). Annealing at 600 °C and 750 °C does not show any significant change in the phase formation. Nonetheless, XRD patterns show a narrowing and an increase in the intensity of Fe2O3 peaks with respect to TiO2, which was reflected by an evolution in particle nano-structure following SEM analysis. An increase in the intensity ratio of the major peaks belonging to Fe2O3 relative to the as-milled mixture, which was associated with a reduction of the amount of TiO2, suggested a possible insertion of Ti into the Fe2O3 crystal lattice. However, in VSM measurements, annealing at 600 °C and 750 °C does not change the ferromagnetic phase but the effect of annealing was a notable reduction in the values of both Ms and Mr (saturation magnetization and remanence magnetization respectively) Ultimately, as the powder was heated to 900 °C a new phase seemed to have emerged, this phase was confirmed by SEM, XRD, and magnetic measurements (VSM) where it change phase from ferromagnetic to paramagnetic phase.  相似文献   

8.
Amorphous boron carbide (α-B4C) coatings were prepared on SiC substrates by chemical vapor deposition (CVD) from CH4/BCl3/H2/Ar mixtures at low temperature (900–1050 °C) and reduced pressure (10 kPa). The deposited coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that two kinds of α-B4C coatings were deposited with different microstructures and phase compositions, and the effect of deposition temperature was significant. When deposited at 1000 °C and 1050 °C, the coatings exhibited a nodular morphology and had a relatively low content of boron. The free carbon was distributed in them inhomogeneously; in contrast, when deposited at 900 °C and 950 °C, the coatings presented a comparatively flat morphology and had a uniform internal structure and high boron content. They did not contain free carbon. At the last of this paper, the pertinent mechanisms resulting in differences in microstructure and phase composition were discussed.  相似文献   

9.
Composite and compositionally graded (CGed) TiN–AlN films were deposited on Si wafers at 600 °C from Ti- and Al-alkoxide solutions by N2 plasma-enhanced chemical vapor deposition (CVD). The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Vickers micro-hardness. In the composite TiN–AlN films, the Ti and Al contents varied linearly and complementarily with solution composition, the N content ranging from 35 to 40 at.%. In the CGed films, the Al component decreased complementarily with increasing Ti toward the substrate. Cross-sectional SEM observation showed both films to be about 1 μm thick with a columnar structure. Oxidation of the composite and CGed films was performed at 500, 700, and 900 °C in air for 1 h. The improvement of oxidation resistance in both composite and CGed films is discussed on the basis of the XRD and SEM observations, and the XPS analysis of the oxidized films.  相似文献   

10.
《Ceramics International》2017,43(17):14784-14790
Geopolymers are formed by mixing of aluminosilicate sources with alkaline meta-silicate solution at room temperature. In the current study, diatomite of Turkish origin was fully utilized as a fumed silica alternative for the preparation of geopolymer, having a typical formula of K2O•Al2O3•4SiO2•11H2O. From XRD of this sample, a broad peak centered at 28° 2θ indicated the well-known formation of amorphous geopolymer, as well as a fully reacted microstructure of geopolymer as seen by scanning electron microscopy. Additionally, geopolymer having the same formula was made by using fumed silica, in order to compare with geopolymers prepared from diatomite. The Weibull modulus was calculated from four-point bending and compressive strength testing of both geopolymer composites. The use of diatomite as a fumed silica substitute in geopolymer production resulted in a very close flexure strength 9.2 (± 4.2 MPa) when compared to geopolymer made from fumed silica 10.2 (± 3.3 MPa). There was a significantly higher compressive strength 71 (± 13.9 MPa) and Weibull modulus (5.4), than comparable properties of geopolymer made from fumed silica, which had a compressive strength 54 (± 25.8 MPa) and Weibull modulus of 2.0. The discrepancy was attributed to some self-reinforcement of the geopolymer matrix due to unreacted diatomite.  相似文献   

11.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

12.
Mg0.5Cu0.05Zn0.45Fe2O4 nanoparticles were prepared through sol–gel method using polyvinyl alcohol as a chelating agent. The as prepared sample was annealed at three different temperatures (500 °C, 700 °C and 900 °C). The phase formation, morphology and magnetic properties with respect to annealing temperature were studied using the characterisation techniques like X-ray diffraction (XRD) as well as Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. The crystallite size and magnetisation showed increasing trend with annealing temperature. The coercivity increased up to a particular annealing temperature and decreased thereafter, indicating transition from single domain to multi domain state with increasing annealing temperature. Further, to know the suitability of the material, as a ferrite core, in multilayer chip inductors, the powder sample annealed at 500 °C was compacted in the form of torroids and sintered at three different temperatures (800 °C, 900 °C and 950 °C). The permeability showed increasing trend with the increase of sintering temperature since the permeability depends on microstructure. The frequency dispersion of permeability, for the sintered samples, demonstrated high frequency stability as well as high operating frequency. The cut-off frequency for the sintered samples 800 °C, 900 °C and 950 °C is 32 MHz, 30.8 MHz and 30.4 MHz, respectively.  相似文献   

13.
《Ceramics International》2017,43(18):16331-16339
In this study, nanosized nickel oxide (NiO) and nickel (Ni) powders were synthesised via glycine-nitrate (GN) combustion process, assisted by nanocrystalline cellulose (NCC) as a template. Despite the unique morphology of NCC, it has yet to be applied as a sacrificial bio-template for GN combustion process. In addition, NiO and Ni nanoparticles were obtained at relatively low temperatures in this study, whereby the calcination temperatures were varied from 400 °C to 600 °C, with calcination durations of 2, 4, and 6 h. The morphological analysis of the resulting products were conducted using FESEM, which showed uniformly dispersed NiO and Ni particles with average crystallite size of 25 nm and 27 nm, respectively. These results were confirmed using X-ray diffraction (XRD) technique. The Raman and Fourier transform infrared (FTIR) spectra revealed that the molecular fingerprints of the samples were in agreement with each other. Further analyses revealed that samples calcined at 600 °C for 4 h showed the lowest particle size for pure NiO, whereas the lowest particle size for pure Ni was obtained at 400 °C for 4 h. The TGA results were also consistent with the XRD analysis, whereby pure Ni was initially formed and upon heating, had gradually converted into NiO.  相似文献   

14.
The speciation of Fe was studied in metakaolin-based geopolymers to which Fe was added as ferric nitrate solution or freshly precipitated ferric hydroxide. From Mössbauer and near-edge X-ray absorption spectroscopies, coupled with X-ray diffraction and electron microscopy, it was concluded that in as-cured geopolymers the Fe was present in octahedral sites, either as isolated ions in the geopolymer matrix or as oxyhydroxide aggregates which had not reacted with the starting geopolymer components. For material to which iron nitrate was added, heating to 900 °C allowed the formation of nepheline and a glass, both of which contained tetrahedrally coordinated, substituted Fe3+.  相似文献   

15.
In this paper, thermal evolution, including element & phase composition and microstructure, of Ba2+ exchanged K-based geopolymer precursor (BaGP) were systematically investigated during high-temperature treatment. The results proved that celsian precursor with lower residual alkaline cation content were obtained through amorphous geopolymer than traditional ion-exchanged celsian through crystallized zeolite. With the increase in temperature, weight loss of BaGP was due to evaporation of OH groups and decomposition of BaCO3. Similar to K-based geopolymer, BaGP showed amorphous structure, and nanometer-sized celsian nucleuses first crystallized from the amorphous BaGP matrix after it was treated at 900 °C. In the treatment temperature range from 1000 to 1400 °C, hexagonal celsian became the main phase. After being treated at 1400 °C, hexagonal celsian grains were clearly noticeable with extra SiO2 locating between celsian grains. It was therefore concluded that geopolymer precursor technique provides an alternative route for the preparation of celsian ceramics.  相似文献   

16.
《Ceramics International》2016,42(3):3888-3898
Through adoption of a self-designed high temperature SHPB apparatus herein, an experimental study is made on the mechanical properties of geopolymer concrete (GC) exposed to dynamic compression under elevated temperatures. As the results have turned out, the weight loss is remarkable within temperature ranges from room temperature to 200 °C as well as from 600 °C to 800 °C. The dynamic compressive strength of GC grows higher at 200 °C than at room temperature, but suffers a dramatic drop at 800 °C. The critical strain is higher at elevated temperature than that at room temperature. At 200 °C and 600 °C, respectively, its energy absorption property is superior to that at room temperature. However, at 400 °C and 800 °C, respectively, it is inferior to that at room temperature. The strain rate effect of the dynamic increase factor (DIF) obtained from test data can reflect the inherent nature of GC. The DIF assumes a linear relationship with the logarithm of strain rate.  相似文献   

17.
Al2O3-YAG (50 vol.%) nanocomposite powders were prepared by wet-chemical synthesis and characterized by DTA-TG, XRD and TEM analyses. Amorphous powders were pre-heated at different temperatures (namely 600 °C, 800 °C, 900 °C and 1215 °C) and the influence of this thermal treatment on sintering behavior, final microstructure and density was investigated. The best performing sample was that pre-calcined at 900 °C, which yields dense bodies with a micronic/slightly sub-micronic microstructure after sintering at 1600 °C. A pre-treatment step to induce controlled crystallisation of the amorphous powder as well as a fast sintering procedure for green compacts, were also performed as a comparison.Finally, the previously stated thermal pre-treatment of the amorphous product was coupled to an extensive mechanical activation performed by wet planetary/ball milling. This procedure was highly effective in lowering the densification temperature, so that fully dense Al2O3-YAG composites, with a mean grain size smaller than 200 nm, were obtained by sintering in the temperature range 1370–1420 °C.  相似文献   

18.
《Ceramics International》2017,43(12):9067-9076
In this paper, the depolymerization and polycondensation process, compressive strength, gel content and conductance of an alkali-activated slag (AAS) (an inorganic polymer or high-calcium geopolymer) paste cured at low temperature (−25 °C~25 °C) were studied. The results showed that gel content of the AAS inorganic polymer sample first increased and then decreased with the decreasing of the curing temperature for 24 h, reaching a maximum value of 37.8 wt% in the samples cured at 0 °C. Chemical structural data are obtained by nuclear magnetic resonance (NMR) spectroscopy for 6-coordinated (octahedral) aluminum can be observed at low temperature (<0 °C) and the gel contains primarily Q1(1Al), Q2(1Al) and Q3 at 0 °C. The inductively coupled plasma emission spectrometry (ICP) analysis of the products showed depolymerization of a great amount of slag at low temperature. The impedance analysis indicated that low temperature (<0 °C) will inhibit the polycondensation process but almost not affect the depolymerization process so as to make a distinction between the depolymerization and polycondensation process in the AAS inorganic polymer system.  相似文献   

19.
Aligned YAG fine fibres had been made previously from an aqueous sol–gel process, but it was suspected that sodium contamination in one of the starting materials lessened the creep resistance of the final product. Therefore, sodium-free gel precursor fibres were made using the same process, and upon firing in air at 900 °C these formed pure phase YAG fibres, of 4 μm diameter. When steamed over 200–500 °C for 3 h, the amorphous gel fibre formed single phase nanocrystalline YAG between 400 and 500 °C, an extraordinarily low temperature for this material to crystallise. Upon postfiring up to 1550 °C, grains averaging 0.5 μm and pores of 0.17 μm had formed, but despite this porosity and smaller grain size, the sodium-free fibre exhibited superior creep resistance than the sodium contaminated fibres reported previously by the authors, typically creeping at temperatures 50 °C higher. This demonstrates that even small levels of sodium contamination are harmful to creep resistance in YAG.  相似文献   

20.
《Ceramics International》2017,43(4):3919-3922
Mullite-based ceramics have been synthesized by reactive sintering of a mixture containing kaolin and a mica-rich kaolin waste. Samples fired in the temperature range from 1300 to 1500 °C were characterized by X-ray diffraction (XRD). The quantitative phase analysis and unit cell parameters of the mullite were determined by Rietveld refinement analysis of the XRD data. Mullite-based ceramics with 1.2 wt% quartz, 56.3 wt% glass (amorphous phase), 2.64 g/cm3 of apparent density, and 35±1.2 MPa of flexural strength were obtained after firing at 1500 °C. A liquid phase sintering mechanism activated by a total mica content of 13.3 wt% allowed to increase the mullite content to 47.6 wt% (2.3 wt% quartz and 50.1 wt% glass phase) and improve the flexural strength (70±3.9 MPa) after firing at 1400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号