共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites. 相似文献
2.
I.V. Iatsyuk Yu.S. Pogozhev E.A. Levashov A.V. Novikov N.A. Kochetov D.Yu. Kovalev 《Journal of the European Ceramic Society》2018,38(7):2792-2801
The work is dedicated to researching into combustion kinetics and mechanism as well as the stages of the chemical transformations during self-propagating high-temperature synthesis of ZrB2-SiC based ceramics. Dependences of the combustion temperature and rate on the initial temperature (T0) have been studied. It has been shown that the stages of the chemical reactions of ZrB2 diboride and SiC carbide formation do not change within the range of T0?=?298–700?К. The effective activation energy of the combustion process amounted to 170–270?kJ/mol, from which it has been concluded that chemical interaction through the melt plays a leading role. The stages of the chemical transformations in the combustion wave have been studied by dynamic X-ray diffraction. First, ZrB2 phase forms from Zr-Si melt saturated with boron, and SiC phase is registered later. The SHS method has successfully been used in order to obtain ZrB2-SiC composite powders and compact ceramics with a silicon carbide content of 25–75%. The ceramics are characterized by a residual porosity of 1.5%, hardness up to 25?GPa, the elastic modulus of 318?±?21?GPa, elastic recovery of 36% and thermal conductivity of 54.9?W/(m?×?K) at Troom. 相似文献
3.
A comparative study has been carried out on densification, microstructure, and creep with oxide-scale formation in ZrB2-20 vol.% SiC-(7, 10 or 14 vol.%) LaB6 composite containing B4C and C as additives, and prepared by spark plasma sintering at 1800 °C under 70 MPa ram pressure. Addition of LaB6 has promoted densification of composites by scavenging oxygen impurity, thereby increasing their hardness. Constant load compressive creep tests at 1300 °C under 47 and 78 MPa stresses have shown the lowest creep rate in the 10 vol.% LaB6 composite. The stress exponents obtained for composites having 10 vol.% LaB6 (~1.3 ± 0.1) and 14 vol.% LaB6 (~2.6 ± 0.2) suggest respectively, grain boundary diffusion with intergranular glassy phase formation and dislocation glide as operating mechanisms. Intergranular cracking caused by grain boundary sliding appears as the damage mechanism. Oxide scales formed during creep exhibit greater thickness and defect concentration than those by isothermal exposure at 1300 °C within similar duration. 相似文献
4.
《Ceramics International》2020,46(9):13685-13694
The densification behavior and toughening mechanisms of ZrB2-based composites with in-situ formed ZrC were investigated. The composites were spark plasma sintered at 1700 °C for 7 min under the applied pressure of 40 MPa. Metallic zirconium and graphite flakes were used as precursors to achieve ZrC reinforcement. Microstructural and phase analyses as well as mechanical characterizations were carried out on the near fully-dense composite samples. Results indicated ZrC as the only secondary phase in composite with 5 vol% of metallic Zr and graphite flakes. However, higher volume fractions of precursor materials led to the formation of ZrO2 as the dominant secondary phase. Whereas decreasing trend of the hardness number versus volume fraction of the precursors was observed, the highest indentation fracture toughness was achieved in sample with 15 vol% metallic Zr/graphite flakes. Finally, the formation of secondary phases and their effects on densification, and mechanical behavior of the composites were discussed. 相似文献
5.
Junjun Chen Jian Chen Xiumin Yao Zhongming Chen Xuejian Liu Zhengren Huang 《Journal of the European Ceramic Society》2018,38(9):3083-3088
SiC/20?wt% ZrB2 composite ceramics were fabricated via pressureless solid phase sintering in argon atmosphere at different temperature. The effect of sintering temperature on microstructure, electrical properties and mechanical properties of SiC/ZrB2 ceramics was investigated. Electrical resistivity exhibits twice significant decreases with increasing sintering temperature. The first decrease from 1900?°C to 2000?°C is attributed to the obvious decrease of continuous pore channels in as-sintered materials. The second decrease from 2100?°C to 2200?°C results from the improvement of carbon crystallization and the disappearance of amorphous layers enveloping ZrB2 grains. Additionally, the increase of sintered density with increasing temperature caused greatly advance of flexural strength, elastic modulus and Vickers hardness. But excessive temperature is detrimental to flexural strength because of SiC grain growth. 相似文献
6.
《Ceramics International》2017,43(18):16457-16461
ZrB2-SiC powders with different amounts of SiC (10–30 wt%) were in-situ synthesized at 1600 °C for 90 min in Ar atmosphere. Effects of SiC addition on the formation of ZrB2 via carbothermal reduction of ZrO2, H3BO3 and carbon black were investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and transmission electron microscope (TEM). The grain size of ZrB2 in final powders decreased with adding SiC. Columnar ZrB2 and granular SiC were combined interactively when the SiC content was 25 wt%. Layer-like hexagonal SiC was obtained in the product containing 30 wt% SiC, whereas the ZrB2 grain growth was strongly inhibited. Furthermore, the growth mechanisms of ZrB2 and SiC were studied. 相似文献
7.
《Journal of the European Ceramic Society》2022,42(9):4024-4029
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added. 相似文献
8.
《Ceramics International》2015,41(7):8388-8396
ZrB2–SiC–ZrO2 composites were hot pressed in order to investigate the effects of adding nano-sized ZrO2 particles as well as the hot pressing parameters on the densification behavior of ZrB2–SiC composites. An L9 orthogonal array of the Taguchi method was employed to study the significance of each parameter such as the sintering temperature, time, the applied external pressure, and ZrO2/SiC volume ratio on the densification process. The statistical analyses revealed that among the mentioned parameters, the hot pressing temperature had a great influence over the densification. By being hot pressed at 1850 °C for 90 min under 16 MPa, fully dense ZrB2-based composites were obtained. The relative density of the composites decreased at first and then enhanced as a function of ZrO2/SiC ratio. Microstructural investigation of the fracture surfaces of the composites, which was carried out using the SEM analysis, showed the formation of new phases on the surfaces of SiC grains. The EDS and XRD analyses identified the ZrC as the newly formed interfacial phase due to the reaction between nano-ZrO2 and SiC. The ZrC acted as an adhesive interphase between the ZrB2/SiC grains, which could assist the sintering process. 相似文献
9.
Junjun Chen Jian Chen Zhongming Chen Xuejian Liu Zhengren Huang Yihua Huang 《Journal of the European Ceramic Society》2018,38(6):2477-2485
ZrB2/SiC composite ceramics were fabricated to improve the electrical conductive properties of SiC matrix. The debinding and sintering temperatures were determined by computation of Gibbs free energy. As a result, all the samples have the relative density above 99%, and have excellent mechanical and electrical properties. The effects of ZrB2 content on the microstructure, mechanical and electrical properties were systematically studied. With increasing ZrB2 content, as-prepared composites show great improvement in their mechanical properties. Importantly, the introduction of ZrB2 weakened varistor nonlinear characteristic of composite and reduced its resistivity. The reason is the evolution of grain boundary in conductive paths. The sharp decrease of resistivity indicates the formation of percolation paths. The percolation threshold at 1?mA?cm?2 obtained via percolation model is 10.7963?vol% (19.7098?wt%) ZrB2. This value is much less than conventional composites, because the percolation path originates from grain boundary breakdown other than continuous conductor chains. 相似文献
10.
Yashpal Gupta T. Venkateswaran B. Venkata Manoj Kumar 《International Journal of Applied Ceramic Technology》2020,17(2):459-467
This research work deals with the investigation of erosive wear of spark plasma sintered ZrB2-SiC composites with variation in angle of incidence (30°, 60°, and 90°), test temperature (room and 800°C) and SiC content (10, 20, and 30 vol.%). Results indicate a large variation in erosion rate from 2.13 to 75.45 mm3/kg with change in angle of incidence, test temperature, and SiC content. Erosion rate decreased with the decrease in angle of incidence, increase in temperature, and increase in SiC content. With increase in SiC content from 10 to 30 vol.%, a maximum reduction of 68% in erosion rate obtained at shallow incidence and room temperature, and a maximum reduction of 78% in erosion rate obtained at shallow incidence and 800°C. SEM-EDS and XRD analyses indicate that formation of B2O3 and SiO2-rich protective surface is responsible for high temperature erosion resistance of ZrB2-SiC composites. 相似文献
11.
《Ceramics International》2020,46(8):12249-12254
The SiC nanowires (NWs) were fabricated by a simple chemical vapour deposition (CVD) method at high temperature using Si, phenolic resin, and ZrB2 powder. The morphologies of the fabricated SiC NWs included SiC/SiO2 chain-beads and straight wires with core-shell structures. The fabricated SiC NWs were micrometre-to-millimetre in length, with chains 100–300 nm in diameter and beads with diameters of less than 1 μm. The core-shell-structured SiC NWs consisted of crystalline SiC cores and thin amorphous SiO2 shells. SiC crystals grew in the [111] direction governed by a vapour-solid (VS) mechanism. The added ZrB2 promotes the generation of gaseous species at higher gas pressures, which contributes to the formation of SiC NWs by CVD. The fabricated SiC NWs exhibited good photoluminescence properties due to many stacking faults and the presence of amorphous SiO2. 相似文献
12.
《Journal of the European Ceramic Society》2023,43(4):1295-1302
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2). 相似文献
13.
Shi C. Zhang Greg E. HilmasWilliam G. Fahrenholtz 《Journal of the European Ceramic Society》2011,31(5):893-901
ZrB2 ceramics containing 10-30 vol% SiC were pressurelessly sintered to near full density (relative density >97%). The effects of carbon content, SiC volume fraction and SiC starting particle size on the mechanical properties were evaluated. Microstructure analysis indicated that higher levels of carbon additions (10 wt% based on SiC content) resulted in excess carbon at the grain boundaries, which decreased flexure strength. Elastic modulus, hardness, flexure strength and fracture toughness values all increased with increasing SiC content for compositions with 5 wt% carbon. Reducing the size of the starting SiC particles decreased the ZrB2 grain size and changed the morphology of the final SiC grains from equiaxed to whisker-like, also affecting the flexure strength. The ceramics prepared from middle starting powder with an equiaxed SiC grain morphology had the highest flexure strength (600 MPa) compared with ceramics prepared from finer or coarser SiC powders. 相似文献
14.
《Journal of the European Ceramic Society》2017,37(2):477-484
SiC-Zr2CN composites were fabricated from β-SiC and ZrN powders with 2 vol% equimolar Y2O3-Sc2O3 additives via conventional hot pressing at 2000 °C for 3 h in a nitrogen atmosphere. The electrical and thermal properties of the SiC-Zr2CN composites were investigated as a function of initial ZrN content. Relative densities above 98% were obtained for all samples. The electrical conductivity of Zr2CN composites increased continuously from 3.8 × 103 (Ωm)−1 to 2.3 × 105 (Ωm)−1 with increasing ZrN content from 0 to 35 vol%. In contrast, the thermal conductivity of the composites decreased from 200 W/mK to 81 W/mK with increasing ZrN content from 0 to 35 vol%. Typical electrical and thermal conductivity values of the SiC-Zr2CN composites fabricated from a SiC-10 vol% ZrN mixture were 2.6 × 104 (Ωm)−1 and 168 W/m K, respectively. 相似文献
15.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF. 相似文献
16.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD. 相似文献
17.
《Ceramics International》2017,43(16):13364-13370
In this study, in order to determine the effect of SiC nanoparticles on tribological properties of nanostructured copper, the dry sliding wear and friction behaviors of nanostructured copper and copper reinforced with silicon carbide nanoparticles, produced by high energy ball milling and spark plasma sintering, were investigated by using an oscillating friction and wear tester under different normal loads. To determine the dominant wear mechanism, the worn surfaces and obtained debris after wear tests were analyzed by scanning electron microscope (SEM). The results showed that the addition of 4 vol% silicon carbide to copper matrix reduced the wear track depth and the coefficient of friction. Investigation of the worn surfaces revealed that SiC nanoparticles on the top of worn surface decreases the plastic deformation in subsurface region and alleviate severe wear. Lower plastic deformation during dry sliding wear test was attributed to high hardness of the nanocomposite that has been resulted from grain growth inhibiting and reinforcing effects of the nanoparticles. Plastic deformation and delamination were determined as major wear mechanisms in both materials. 相似文献
18.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples. 相似文献
19.
Microstructures of ZrB2 ceramics consolidated by hot-pressing and spark plasma sintering were investigated by transmission electron microscopy (TEM), combining energy dispersive X-ray spectroscopy (EDX). The microstructures of both ceramics were compared. Amount of impurities was lower for ZrB2 consolidated by spark plasma sintering than for hot-pressed ZrB2. In particular, oxygen impurity was not detected even at the grain-boundaries in ZrB2 consolidated by spark plasma sintering. The cleaning effect generated on the powder surfaces during spark plasma sintering cycle was displayed. In addition, dislocations were present only in the spark plasma sintered ZrB2 ceramic, as a result of localized high stresses. 相似文献
20.
Bingying Xie Li Ma Dezhi Gao Xiao Lin Yu Liu Yujun Zhang Hongyu Gong 《Ceramics International》2018,44(8):8795-8799
ZrB2 powders were successfully prepared via carbothermal reduction of ZrO2 with H3BO3 and carbon black under flowing argon. By introducing SiC species into reaction mixtures, the effects of SiC addition on phase composition and morphology of ZrB2 powders thermally treated at different temperatures were investigated. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). The highly pure ZrB2 with the mean size of 5?µm could be obtained at 1600?°C for 90?min and the grains presented columnar shapes. After addition of SiC, ZrB2 revealed relatively better crystallinity and finer particle size. Regular columnar ZrB2 grains ranging from 1 to 2?µm were seen existing after reaction at 1500?°C for 90?min. 相似文献