首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(9):7147-7152
Novel Mn4+-doped magnetoplumbite-related aluminate X-type Ca2Mg2Al28O46 and W-type CaMg2Al16O27 red phosphors were synthesized by solid-state reaction, and we investigated their photoluminescence properties. X-type Ca2Mg2Al28O46:Mn4+ and W-type CaMg2Al16O27:Mn4+ exhibited red photoluminescence, with peaks at 655 and 656 nm, arising from the spin-forbidden 2E→4A2 transition of Mn4+ under near-ultraviolet and blue light excitation, respectively. Therefore, these red phosphors can be excited by near ultraviolet or blue LED light. The photoluminescence properties of these phosphors were similar because magnetoplumbite-related structures crystallize similarly, forming structures consisting of stacked S and R blocks. From these results, we confirmed that magnetoplumbite-related compounds can act as the host structure for Mn4+-doped phosphors.  相似文献   

2.
ZnGa2O4 phosphors were prepared by both SCM (solution combustion method) and SSRM (solid state reaction method). The properties of the both ZnGa2O4 phosphors were investigated by TGA (Thermogravimetric analysis), SEM (scanning electron microscope), BET (Brunauer Emmett Teller), PL (photoluminescence) and XRD (X-ray diffraction). The particle size of SCM phosphor was about one-hundredth of SSRM phosphor. The PL intensity of SCM phosphor was about 1.5-fold higher than that of SSRM phosphor. The SCM phosphor was also tried to be doped with Mn2+ ions. The highest PL peak was observed with Mn2+ ions of 0.003 mol fraction. The peak was shifted from blue (470 nm) to green (513 nm) color. These results might be very useful for high efficiency phosphors for displays such as field emission displays and plasma display panels.  相似文献   

3.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

4.
《Ceramics International》2016,42(15):16626-16632
A series of Ce3+ doped and Ce3+/Mn2+ co-doped calcium zirconium silicate CaZrSi2O7 (CZS) phosphors have been synthesized via conventional high temperature solid state reactions. The luminescence properties, energy transfer between Ce3+ and Mn2+ have been investigated systematically. Under 320 nm excitation, the phosphor CZS: 0.05Ce3+ exhibit strong blue emission ranging from 330 nm to 500 nm, attributed to the spin-allowed 5d-4f transitions of Ce3+ ions. There are two different emission centers of Ce3+ ions, Ce3+(I) and Ce3+(II). The emission spectra of Ce3+, Mn2+ co-doped phosphors shows a broad emission around 550 nm corresponding to the 4T1(4G)-6A1(6S) spin-forbidden transition of Mn2+. The energy transfer between Ce3+ and Mn2+ is detected and the transfer efficiency of Ce3+(II) to Mn2+ is faster than that of Ce3+(I) to Mn2+. The resonant type is identified via dipole-dipole mechanism. Additionally, a blue-shift emission of Ce3+ and a red-shift emission of Mn2+ have been observed following the increase of Mn2+ content in relation to the energy transfer. Thermal quenching has been investigated and the emission spectra show a blue-shift with the temperature increases, which have been discussed in details. CZS: 0.05Ce3+, yMn2+ phosphors can be tuned from blue to white and even to yellow by adjusting the Mn2+ content. All the results indicate that CZS: Ce3+, Mn2+ phosphor have a potential application for near-UV LEDs.  相似文献   

5.
《Ceramics International》2016,42(11):13011-13017
H3BO3 was added during the preparation of Sr2MgAl22O36:Mn4+ phosphors by a high-temperature solid-state reaction method. The influence of H3BO3 flux on the crystal structure, particle morphology and photoluminescence properties of the Sr2MgAl22O36:Mn4+ phosphors was investigated by employing X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy, respectively. The results indicate that adding H3BO3 flux can improve the luminescence intensity and morphology, and reduce the synthesis temperature of the Sr2MgAl22O36 phosphor. The formation temperature of pure-phase Sr2MgAl22O36 was significantly decreased when H3BO3 flux as introduced. The excited state lifetime of the Sr2MgAl22O36:1.2 mol% Mn4+ phosphor by the addition of 2.0 wt% H3BO3 was ~1.02 ms. We demonstrated the potential of these phosphors to enhance sunlight harvesting by agricultural light conversion film testing. We propose that films containing the Sr2MgAl22O36:1.2 mol% Mn4+ phosphor can be applied to increase the production of agricultural plants.  相似文献   

6.
《Ceramics International》2017,43(12):9158-9163
In this account, Bi4Si3O12:Sm3+ and (Bi4Si3O12:Sm3+, Pr3+) red phosphors were prepared by solution combustion method fueled by citric acid at 900 °C for 1 h. The effects of co-doping Pr3+ ions on red emission properties of Bi4Si3O12:Sm3+ phosphors, as well as the mechanism of interaction between Sm3+ and Pr3+ ions were investigated by various methods. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) revealed that smaller amounts of doped rare earth ions did not change the crystal structure and particle morphology of the phosphors. The photoluminescence spectroscopy (PL) indicated that shape and position of the emission peaks of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at λex=403 nm were similar to those of Bi4Si3O12:Sm3+ phosphors. The strongest emission peak was recorded at 607 nm, which was attributed to the 4G5/26H7/2 transition of the Sm3+ ion. The photoluminescence intensities of Bi4Si3O12:Sm3+ phosphors were significantly improved by co-doping with Pr3+ ions and were maximized at Sm3+ and Pr3+ ions doping concentrations of 4 mol% and 0.1 mol%, respectively. The characteristic peaks of Sm3+ ions were displayed in the emission spectra of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at respectively λex=443 nm and λex=481 nm (Pr:3H43P2, 3H43P0). This indicated the existence of Pr3+→Sm3+ energy transfer in (Bi4Si3O12:Sm3+, Pr3+) phosphors.  相似文献   

7.
A new structure for ceramic pigments was synthesized by a conventional solid state reaction process. It is based on Ni-doped hibonite, CaAl12O19, which assumes a turquoise-like blue colour similar to that of V-doped zircon. Hibonite is associated with anorthite, CaAl2Si2O8, acting like a fluxing agent in order to lower the synthesis temperature, and with cassiterite, SnO2, acting as a tin buffer to promote coupled Ni2+ + Sn4+  Al3+ + Al3+ substitutions, in order to ensure the electric neutrality of the hibonite lattice. Since relatively low chromophore contents are required, this new system constitutes an interesting alternative to the common blue ceramic pigments based on cobalt aluminate spinel or vanadium-doped zircon, implying lower cost and environmental advantages. The pigments characterization was performed by X-ray powder diffraction, diffuse reflectance spectroscopy, CIELAB colorimetric analysis, and testing in ceramic glazes and bodies. The substitution of Al3+ by bigger ions, like Ni2+ and Sn4+, increases the cell volume compared to undoped hibonite and is responsible for the turquoise blue colour, as verified by UV–vis analysis. The chromatic mechanism is due to incorporation of Ni2+ in tetrahedral coordination, likely occurring at the site M3 of the hibonite lattice, where it partially substitutes the Al3+ ion. While this product shows a strong hue as a pigment, it is not stable after severe testing in glazes and attempts to improve its colouring performance are now under development.  相似文献   

8.
《Ceramics International》2016,42(5):5995-5999
In this paper, a series of novel luminescent Sr1−xAl12O19:xEu2+ phosphors were synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, as well as the decay curves were investigated. The quenching concentration of Eu2+ in SrAl12O19 was about 0.15 (mol). Upon excitation at 378 nm, the composition-optimized Sr0.85Al12O19:0.15Eu2+ exhibited strong broad-band green emission at 530 nm with the CIE chromaticity (0.2917, 0.5736). The results indicate that Sr1−xAl12O19:xEu2+ phosphors have potential applications as green-emitting phosphors for UV-pumped white-light LEDs.  相似文献   

9.
《Ceramics International》2017,43(5):4353-4356
In this paper, Sm3+-doped Ca6BaP4O17 phosphors were synthesized via a conventional solid-state reaction method. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 405 nm. The luminescence properties of the obtained phosphors were characterized. The Ca6BaP4O17:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 567, 602, and 650 nm, respectively. The thermal stability of Ca6BaP4O17:Sm3+ phosphors was investigated systematically and corresponding mechanisms were proposed. Based on the results, the as-prepared Ca6BaP4O17:Sm3+ phosphors are promising orange-red-emitting phosphors for near-UV-based white light-emitting diodes.  相似文献   

10.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

11.
《Ceramics International》2017,43(9):6949-6954
Mn4+ doped and Mn4+/Cr3+ co-doped alkali metal titanate phosphors have been prepared by solid state reaction method. A part of Li+ ions in the Li2MgTiO4: Mn4+ are substituted with Na+ and K+ ions and consequently the intensity of Mn4+ emission at 678 nm is enhanced by 1.7 and 2.5 times, respectively. In the Mn4+/Cr3+ co-doped (Li0.95K0.05)2MgTi0.999O4, both emission of Cr3+at 726 nm and emission of Mn4+ at 678 nm of Mn4+ are observed. It is interesting to find that the intensity ratio of 726–678 nm emissions in the Mn4+/Cr3+ phosphor continually increases with excitation wavelength increasing from 290 nm to 455 nm, which means that the intensity ratio in turn can be used to identify the excitation light wavelength. This refers a possible approach to design novel compact light-wavelength detector or spectrometer based on the phosphor. The mechanism of Na+ or K+ substitution induced luminescence enhancement in the Mn4+ phosphor and the competition between the Cr3+ and Mn4+ emissions in the Mn4+/Cr3+ co-doped has been discussed.  相似文献   

12.
《Ceramics International》2016,42(15):16852-16860
Green light emitting Zn2SiO4:Mn2+ phosphors have been synthetised by the solid-state reaction in ambient atmosphere at 1300 °C for 2 h, with ZnO, SiO2 and MnO2 as the reagents. The ZnO/SiO2 molar ratio varied from 2 to 0.5. The doping level was in a lower concentration range (0.01≤x≤0.05). The effect of both the Mn2+ concentration and ZnO/SiO2 molar ratio on luminescence intensity and decay was investigated in detail. The microstructure and phase composition of prepared phosphors were characterised by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). XRD results indicate that the pure α-Zn2SiO4 phase with rhombohedral structure was obtained after heat treatment. The prepared phosphors exhibit a strong green emission centred at 525 nm from the 4T16A1 forbidden transition. The highest emission intensity was observed for phosphors with ZnO/SiO2 molar ratio equal to 1.0, and the Mn2+ concentration x=0.03 (ZSMn3). The emission intensity of the ZSMn3 phosphor is comparable with the commercial Zn2SiO4:Mn2+ phosphor. The decay curves can be characterised by double exponential function. After fitting a fast component τ1∼2 ms and a slow component τ2∼10 ms were obtained. The decay times decrease significantly with increasing Mn2+ concentration. The decay time and luminescence mechanism depend on the excitation light wavelength. Temperature dependent luminescence of the ZSMn3 phosphor in the temperature range of 25–200 °C was studied.  相似文献   

13.
《Ceramics International》2016,42(4):5286-5290
In the present work, we have attempted to reduce the effect of coring effect in the titanate ceramic system BaTi4O9 (BT4) by doping it with Mn4+. The microwave dielectric BaTi4O9 ceramics doped with 0, 0.5 and 1.0 mol% Mn4+ were synthesized by conventional ceramic processing route. The XRD studies confirmed a single phase crystalline structure for all the ceramic samples studied. The SEM micrographs of the ceramics reveal a microstructural change leading towards a more uniform grain size distribution as the Mn4+ content increases to 1.0 mol%. In the low frequency region (100 Hz to 1 MHz), the temperature stability of dielectric properties exhibits a marked improvement with the increasing amount of Mn4+ in the ceramic system. In the microwave frequency region (9.3 GHz), Q-factor increases from 11,625 GHz to 46,500 GHz for BaTi4O9 ceramic doped with 1.0 mol% Mn4+. The present paper reveals that the commonly observed degradation of dielectric properties due to coring effect in the BaTi4O9 ceramic system can be controlled by doping it with an appropriate quantity of Mn4+.  相似文献   

14.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

15.
Manganese-doped zinc aluminate spinel (ZnAl2O4:Mn; Mn=0–6.0 mol%) phosphor nanoparticles were prepared by the sol–gel process. The effects of thermal annealing and dopant concentration on the structure, microstructure and luminescence of the powder phosphors were investigated. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) results confirmed that a single-phase spinel started to crystallize at around 600 °C for the investigated powders. On heating at 600–1200 °C, the powders had the average crystallite sizes of around 12–33 nm. The crystallite size and lattice constant increased as the doping level of Mn increased. FT-IR spectra exhibited only absorption bands of the AlO6 octahedral groups, which suggested that the powder phosphors mainly crystallized in a normal spinel structure. Scanning electron microscopy (SEM) investigations showed the primary particle sizes were around 20–25 nm for the powders annealed at 1000 °C, and less than ca. 50 nm for those annealed at 1200 °C. Photoluminescence (PL) spectra under UV or visible light excitation exhibited a strong green emission band centered at 510 nm, corresponding to the typical 4T1(4G)—6A1(6S) transition of tetrahedral Mn2+ ions. The most intense PL emission was obtained by exciting at 458 nm. The PL intensity was significantly enhanced by the improved crystallinity and diminished OH? groups. Optimum brightness occurred at a doping of 3.0 mol% Mn.  相似文献   

16.
A comparison between theoretically calculated unit cell volume and interatomic distances in the system La0.7Sr0.3Mn1−xMexO3+δ (where Me = Cu, Fe, Cr, Ti) and the experimental data obtained by the full-profile Rietveld X-ray analysis as well as an analysis of magnetic properties allowed us to suggest possible mechanisms of charge compensation occurring when d metals substitute for manganese. It has been shown that in the case when copper, iron, chromium and titanium ions substitute for manganese ions in the system La0.7Sr0.3Mn1−xMexO3 charge compensation is described by the model 2Mn3+  Mn4+ + Cu2+, Mn3+  Fe3+, Mn3+  Cr3+ and Mn4+  Ti4+, respectively. In the latter case, a decrease in oxygen nonstoichiometry occurs with increasing x.  相似文献   

17.
《Ceramics International》2015,41(4):5830-5835
Trivalent dysprosium doped strontium aluminates (SrA12O4:Dy3+) were synthesized by firing the sol–gel at 600, 700 and 800 °C. The morphology, crystal structure, photoluminescence and long afterglow of the synthesized SrAl2O4:Dy3+ phosphors were characterized with scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and photoluminescence spectroscopy, respectively. It is found that SrA12O4:Dy3+ phosphors exhibit broadband afterglows with its peak at about 510 nm. As the sol–gel synthesis temperature increases from 600 to 800 °C, the green afterglow of the SrA12O4:Dy3+ phosphors becomes weaker in intensity and shorter in lifetime. The results are discussed in terms of thermally generated point defects in the host material.  相似文献   

18.
《Ceramics International》2015,41(7):8801-8808
Gd2O3:Dy3+ Al3+ phosphors is synthesised by a wet-chemical method for various concentrations of Al3+ ion. X-ray diffraction, photoluminescence and impedance spectroscopy are used to understand the physio-chemical properties of the phosphors. The emission spectra of Dy3+ ion exhibit transition peaks centred at 572 nm (yellow), 486 nm (blue) and 669 nm (red). Energy transfer from Gd3+ to Dy3+ is also verified by exciting the phosphors at 274 nm. Some of the Dy3+ ions occupy both C2 and S6 site of Gd3+ ion in Gd2O3 matrix. It is also revealed that the enhancement of Dy3+ emission is strongly correlated to the surface morphology of the phosphors. Introducing Al3+ ions in Gd2O3:Dy3+ phosphor affect the emission properties of Dy3+ ions and its influence is explored at various concentration of Al3+ ions. The energy level diagram is presented to explain the cross-relaxation process among Dy3+ ions and the energy transfer from Gd3+ to Dy3+ ion.  相似文献   

19.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

20.
A series of red-emitting phosphors Eu3+-doped Sr3Y(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Y(PO4)3:Eu3+ phosphors exhibit peaks associated with the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The integral intensity of the emission spectra of Sr3Y0.94(PO4)3:0.06Eu3+ phosphors excited at 392 nm is about 3.4 times higher than that of Y2O3:Eu3+ commercial red phosphor. The Commission Internationale de l’Eclairage chromaticity coordinates, the quantum efficiencies and decay times of the phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Y(PO4)3 phosphors are promising red-emitting phosphors pumped by near-UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号