首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

2.
Porous BN/Si3N4 composite ceramics with different BN contents have been fabricated by gel casting. The rheological behaviors of the suspensions, microstructure, mechanical properties, dielectric properties and critical temperature difference of thermal shock (ΔTC) of porous BN/Si3N4 composite ceramics with different BN contents were investigated. With BN contents increasing, the mechanical properties of the porous BN/Si3N4 composite ceramics were partially declined, but the dielectric properties and thermal shock resistances were enhanced at the same time. For the porous Si3N4 ceramic without BN addition, the porosity, flexural strength, dielectric constant and critical temperature difference were 48.1%, 128 MPa, 4.1 and 395 °C, while for the 10 vol% BN/Si3N4 porous composite ceramics, they were 49.4%, 106.6 MPa, 3.8, and 445 °C, respectively. The overall performance of the obtained porous BN/Si3N4 composite ceramics indicated that it could be one of the ideal candidates for high-temperature wave-transparent applications.  相似文献   

3.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

4.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

5.
6.
《Ceramics International》2017,43(15):12109-12119
In this work, we present novel hexagonal boron nitride (h-BN)/poly(arylene ether nitrile) nanocomposites with high dielectric permittivity and thermal conductivity. For this purpose, the interfacial adhesion and orientation of nanofillers are the two key factors that need to be considered. Firstly, iron oxide was attached onto the surface of h-BN to obtain magnetically responsive property, which would realize the orientation of h-BN by applying an external magnetic field during the preparation process of PEN composites. Secondly, the magnetic h-BN was further modified by mussel-inspired method with dopamine and secondary functional monomer (KH550). It was found that the alignment of h-BN and improvement of interfacial adhesion resulted in the interesting properties of PEN composites. With addition of 30 wt% modified h-BN, the dielectric permittivity of PEN composites was increased from 3.2 of neat PEN to 16.4 (increased by 413%), and the low dielectric loss was remained. Meanwhile, the thermal conductivity was enhanced to 0.662 W/m K (increased by 140%) at the same loading content. In addition, the resulting h-BN/PEN nanocomposites maintained high mechanical strength and thermal stability even the nanofillers loading content reached 30 wt%. Therefore, the dielectric and thermally conductive h-BN/PEN composites with high mechanical strength and thermal stability have big advantages in the area of energy storage devices.  相似文献   

7.
《Ceramics International》2017,43(5):4235-4240
In the present work, a novel and facile process has been proposed to fabricate porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant (εr<4.0). Since silica poly-hollow microspheres could serve as the source of SiO2 and the pore-forming agent, they have been introduced into Si3N4 slurry through the gelcasting technique. This process is benefited from the liquid phase sintering reaction between SiO2 and Si3N4 with the aid of sintering additives, leading to in-situ synthesis of Si2N2O phase and porous structure. The content of silica poly-hollow microspheres has great influence on the properties of the final products. It indicates that Si2N2O phase would become the major phase when the content of silica poly-hollow microspheres was above 25 wt%. Furthermore, the micromorphology results reveal that the content of pores with many smaller aggregate microspheres increases as microspheres amount rises. As a result, along with the addition of silica poly-hollow microspheres, the bulk density decreases to 1.32±0.01 g/cm3, and open porosity ranges from 28.4±0.4% to 52.0±0.5%. Porous Si2N2O-Si3N4 multiphase ceramics prepared with 25 wt% silica poly-hollow microspheres addition possess flexural strength of 42.3±3.8 MPa, low dielectric constant of 3.31 and loss tangent of 1.93×10−3. It turns out to be an effective method to fabricate porous Si2N2O-Si3N4 composites with excellent mechanical and dielectric properties, which could be applied to radome materials.  相似文献   

8.
《Ceramics International》2015,41(8):9488-9495
The ceramic/polymer composites based on epoxy-terminated dimethylsiloxane (ETDS) and boron nitride (BN) were prepared for use as thermal interface materials (TIMs). 250 µm-sized BN was used as a filler to achieve high-thermal-conductivity composites. To improve the interfacial adhesion between the BN particles and the ETDS matrix, the surface of BN particles were modified with silica via the sol–gel method with tetraethyl orthosilicate (TEOS). The interfacial adhesion properties of the composites were determined by the surface free energy of the particles using a contact angle test. The surface-modified BN/ETDS composites exhibited thermal conductivities ranging from 0.2 W/m K to 3.1 W/m K, exceeding those of raw BN/ETDS composites at the same weight fractions. Agari׳s model was used to analyze the measured thermal conductivity as a function of the SiO2-BN concentration. Moreover, the storage modulus of the BN/ETDS composites was found to increase with surface modification of the BN particles.  相似文献   

9.
Mechanical and dielectric properties of porous Si2N2O–Si3N4 in situ composites fabricated for use as radome by gel-casting process were investigated. The flexural strength of the Si2N2O–Si3N4 ceramics is 230.46 ± 13.24 MPa, the complex permittivity of the composites varies from 4.34 to 4.59 and the dissipation factor varies from 0.00053 to 0.00092 from room temperature to elevated temperature (1150 °C) at the X-band. In the porous regions, some Si2N2O fibers (50–100 nm in diameter) are observed which may improve the materials properties.  相似文献   

10.
《Ceramics International》2016,42(16):18641-18647
Silicon nitride (Si3N4) ceramics offer excellent thermal, mechanical and dielectric properties, which make Si3N4 a good candidate material for an application as electronic packaging material. For an application as a heat dissipation substrate, most studies focused on achieving a high thermal conductivity through long-time heat preservation and different kinds of heat treatments. Very few studies also considered the mechanical and dielectric properties. In addition, there have not been systematic researches about influence of additives concentration and type on the combination properties of Si3N4. Therefore, in this study, Si3N4 ceramic samples were prepared via hot pressing at 1800 °C with a relatively short heat preservation step (2 h), with different amounts of Y2O3 added as sintering additive. The effect of the initial concentration of the rare earth oxide on the chemical composition, microstructure, thermal conductivity, as well as the mechanical and dielectric properties of the Si3N4 ceramic samples was systematically studied.  相似文献   

11.
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties.  相似文献   

12.
Hexagonal graphitic boron nitride (h-BN) composites show excellent corrosion and thermal shock resistance, good mechanical tolerance and machinability, especially Si3N4–BN and Sialon–BN composites; they have already been used as break rings for horizontal continuous casting of steel. However, the strength of the conventionally processed BN composites were remarkably degraded by the addition of BN due to the poor densification behavior and the existence of large BN flakes or agglomerates of BN flakes that acted as fracture flaws. This means that BN dispersoids with fine particle size and homogeneous distribution are the key factors to obtain high strength composites. By in situ process, such microstructural features can be realized. In this work, by using the proposed in situ reactions, synthesis, microstructures and properties of various in situ nonoxide-boron nitride (Nobn) composites including SiC–BN, Si3N4–BN, AlN–BN, Sialon–BN and Alon–BN composites were investigated. For some Nobn composite systems, due to the large volume expansion during the reaction processes, near-net shape sintering can be realized. For example, the sintering shrinkage of AlN-30 vol.% BN was 3.1% and that of Alon-21 vol.% BN was 4.2%. This will be an advantage for the fabrication of large and complicated products.  相似文献   

13.
Sintered reaction-bonded silicon nitride (SRBSN) with improved thermal conductivity was achieved after the green compact of submicron Si powder containing 4.22 wt% impurity oxygen and Y2O3-MgO additives was nitrided at 1400 °C for 6 h and then post-sintered at 1900 °C for 12 h using a BN/graphite powder bed. During nitridation, the BN/10 wt% C powder bed altered the chemistry of secondary phase by promoting the removal of SiO2, which led to the formation of larger, purer and more elongated Si3N4 grains in RBSN sample. Moreover, it also enhanced the elimination of SiO2 and residual Y2Si3O3N4 secondary phase during post-sintering, and thus induced larger elongated grains, decreased lattice oxygen content and increased Si3N4-Si3N4 contiguity in final SRBSN product. These characteristics enabled SRBSN to obtain significant increase (∼40.7%) in thermal conductivity from 86 to 121 W  m−1  K−1 without obvious decrease in electrical resistivity after the use of BN/graphite instead of BN as powder bed.  相似文献   

14.
The AlN/MAS/Si3N4 ternary composites with in-situ grown rod-like β-Si3N4 were obtained by a two-step sintering process. The microstructure analysis, compositional investigation as well as properties characterization have been systematically performed. The AlN/MAS/Si3N4 ternary composites can be densified at 1650 °C in nitrogen atmosphere. The in-situ grown rod-like β-Si3N4 grains are beneficial to the improvement of thermal, mechanical, and dielectric properties. The thermal conductivity of the composites was increased from 14.85 to 28.45 W/(m K) by incorporating 25 wt% α-Si3N4. The microstructural characterization shows that the in-situ growth of rod-like β-Si3N4 crystals leads to high thermal conductivity. The AlN/MAS/Si3N4 ternary composite with the highest thermal conductivity shows a low relative dielectric constant of 6.2, a low dielectric loss of 0.0017, a high bending strength of 325 MPa, a high fracture toughness of 4.1 MPa m1/2, and a low thermal expansion coefficient (α25–300 °C) of 5.11 × 10?6/K. This ternary composite with excellent comprehensive performance is expected to be used in high-performance electronic packaging materials.  相似文献   

15.
1 mol% of MgO was added together with 7 mol% of Yb2O3 as sintering additives to silicon nitride powder to fabricate advanced silicon nitride ceramics with both high thermal conductivity and low dielectric loss at 2 GHz. The mixed powder was CIPed at a pressure of 120 MPa and was gas-pressure sintered at 1900 °C to >98% of theoretical density. The sintered Si3N4 sample exhibited a high thermal conductivity of ~100 W m?1 K?1 and a loss tangent (tan δ) of ~4 × 10?4, concurrently. The tan δ was further reduced by half after the heat treatment at 1300 °C for 24 h. The improvement in tan δ due to the annealing was explained from the point of crystallization of the intergranular glassy phase.  相似文献   

16.
《Ceramics International》2017,43(6):5136-5144
Stoichiometric Tantalum carbide (TaC) ceramics were prepared by reaction spark plasma sintering using 0.333–2.50 mol% Si3N4 as sintering aid. Effects of the Si3N4 addition on densification, microstructure and mechanical properties of the TaC ceramics were investigated. Si3N4 reacted with TaC and tantalum oxides such as Ta2O5 to form a small concentration of tantalum silicides, SiC and SiO2, with significant decrease in oxygen content in the consolidated TaC ceramics. Dense TaC ceramics having relative densities >97% could be obtained at 0.667% Si3N4 addition and above. Average grain size in the consolidated TaC ceramics decreased from 11 µm at 0.333 mol% Si3N4 to 4 µm at 2.50 mol% Si3N4 addition. The Young's modulus, Vickers hardness and flexural strength at room temperature of the TaC ceramic with 2.50 mol% Si3N4 addition was 508 GPa, 15.5 GPa and 605 MPa, respectively. A slight decrease in bending strength was observed at 1200 °C due to oxidation of the samples.  相似文献   

17.
In this study, silicon nitride (Si3N4) ceramics added with and without boron nitride nanotubes (BNNTs) were fabricated by hot-pressing method. The influence of sintering temperature and BNNTs content on the microstructures and mechanical properties of Si3N4 ceramics were investigated. It was found that both flexural strength and fracture toughness of Si3N4 were improved when sintering temperature increases. Moreover, α-Si3N4 phase could transform into β-Si3N4 phase completely when sintering temperature rises to 1800 °C and above. BNNTs can enhance the fracture toughness of Si3N4 dramatically, which increases from 7.2 MPa m1/2 (no BNNTs) to 10.4 MPa m1/2 (0.8 wt% BNNTs). However, excessive addition of BNNTs would reduce the fracture toughness of Si3N4. Meanwhile, the flexural strength and relative density of Si3N4 decreased slightly when BNNTs were added. The related toughening mechanism was also discussed.  相似文献   

18.
In this study, three-dimensional silicon nitride fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase were fabricated through chemical vapor infiltration. Through comparing the changes of microstructure, thermal residual stress, interface bonding state, and interface microstructure evolution of composites before and after heat treatment, the evolution of mechanical and dielectric properties of Si3N4f/BN/Si3N4 composites was analyzed. Flexural strength and fracture toughness of composites acquired the maximum values of 96 ± 5 MPa and 3.8 ± 0.1 MPa·m1/2, respectively, after heat treatment at 800 °C; however, these values were maintained at 83 ± 6 MPa and 3.1 ± 0.2 MPa·m1/2 after heat treatment at 1200 °C, respectively. The relatively low mechanical properties are mainly attributed to the strong interface bonding caused by interfacial diffusion of oxygen and subsequent interfacial reaction and generation of turbostratic BN interphase with relatively high fracture energy. Moreover, the Si3N4f/BN/Si3N4 composites also displayed moderate dielectric constant and dielectric loss fluctuating irregularly around 5.0 and 0.04 before and after heat treatment, respectively. They were mainly determined based on the intrinsic properties of materials system and complex microstructure of composites.  相似文献   

19.
30 vol.% 2 and 30 μm diamond dispersed Si3N4 matrix composites were prepared by pulsed electric current sintering (PECS) for 4 min at 100 MPa in the 1550–1750 °C range. The densification behaviour, microstructure, Si3N4 phase transformation and stiffness of the composites were assessed, as well as the thermal stability of the dispersed diamond phase. Monolithic Si3N4 with 4 wt% Al2O3 and 5 wt% Y2O3 sintering additives was fully densified at 1550 °C for 4 min and 60 MPa. The densification and α to β-Si3N4 transformation were substantially suppressed upon adding 30 vol.% diamond particles. Diamond graphitisation in the Si3N4 matrix was closely correlated to the sintering temperature and grit size. The dispersed coarse grained diamonds significantly improved the fracture toughness of the diamond composite, whereas the Vickers hardness was comparable to that of the Si3N4 matrix ceramic. The Elastic modulus measurements were found to be an excellent tool to assess diamond graphitisation in a Si3N4 matrix.  相似文献   

20.
《Ceramics International》2017,43(3):3435-3438
Graphene nanoribbons (GNRs) were obtained by unzipping multiwall carbon nanotubes (MWCNTs). Three different silicon nitride-carbon nanostructures were prepared by spark plasma sintering (SPS): ceramic composites that contained 1 wt% carbon nanofibers (CNFs), 1 wt% MWCNTs and 1 wt% GNRs respectively. The α to β-Si3N4 transformation ratio and thermal diffusivity of GNR/Si3N4 composites were higher than both CNF/Si3N4 composites and MWCNT/Si3N4 composites. Furthermore, the higher thermal diffusivities of GNR/Si3N4 composites can primarily be attributed to the higher number of elongate β-Si3N4 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号