首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
闭孔泡沫铝的电磁屏蔽性能   总被引:22,自引:3,他引:22  
采用粉末冶金发泡法制备闭孔泡沫铝,通过调整发泡剂含量、发泡温度、粘度、保温时间等手段,制得孔隙率可调、孔洞分布均匀的闭孔泡沫铝样品,并测试了不同孔隙率、孔径泡沫铝样品的电磁屏蔽性能.结果表明:在100~1000MHz内,泡沫铝的电磁屏蔽性能在60~90dB之间,且随着孔隙率、孔径的增加,泡沫铝的电磁屏蔽性能下降.  相似文献   

2.
粉末冶金法制备泡沫铝材研究进展   总被引:3,自引:1,他引:3  
介绍了泡沫铝材的用途和应用前景,国内外的研究现状,重点阐述了采用粉末冶金法制备泡沫铝材的基本原理、工艺流程,与其它方法比较的优缺点。对粉末冶金法制备泡沫铝过程的制坯压力、发泡剂量、发泡温度、发泡时间等参数对发泡过程的影响进行了讨论,分析了泡沫铝研究的现存问题及发展趋势。  相似文献   

3.
Aluminium foams can be manufactured by two main methods: casting and powder metallurgy. When the latter route is used, a foaming agent (usually TiH2) is mixed with the aluminium or aluminium alloy powders, followed by powder mixture consolidation (usually hot extrusion) into a precursor and finally its foaming treatment. In this research, two calcium carbonate powders were used as foaming agents on an Al–Mg–Si (AA6061) alloy. Their different characteristics (particle size and chemical composition) modified the manufacturing process to achieve the final foam. AA6061 powders were then mixed with 10% calcium carbonate and, after cold isostatic pressing into green cylinders, hot extruded at different temperatures (475–545 °C). The foaming treatment was carried out in a furnace preheated to 750 °C using several heating times. The density changed from 2.03 to 2.10 g/cm3 after cold isostatic pressing to 2.64–2.69 g/cm3 in precursor materials obtained by hot extrusion. Foaming behaviour depends on the carbonate powder as well as the extrusion temperature. Thus, natural carbonate powder (white marble) produces a foam density close to 0.65 g/cm3 after a shorter time than when chemical carbonate is used. The foam structure showed a low degree of aluminium draining, no wall cell cracks and a good fine cell size distribution. Compressive strength of 6.11 MPa and 1.8 kJ/m3 of energy absorption were obtained on AA6061 foams with a density between 0.53 and 0.56 g/cm3.  相似文献   

4.
Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.  相似文献   

5.
穿孔法改进泡沫铝的吸声性能   总被引:1,自引:0,他引:1  
利用熔体发泡技术制备不同孔径和气孔率的泡沫铝,对不同气孔率的原始状态泡沫铝以及孔径为1.1 mm的穿孔泡沫铝的吸声性能进行研究。结果表明:未设置背腔时,原始状态泡沫铝的吸声性能不高,设置背腔后,由于泡沫铝中所含通透结构的作用,泡沫铝的吸声性能明显提高;穿孔泡沫铝的穿孔率在0.5%~1.0%范围,设置60~80 mm背腔时可使降噪系数超过0.42,比原始状态泡沫铝不设置背腔时的降噪系数高2倍左右;穿孔泡沫铝设置背腔后的吸声特性符合Helmholtz共振吸声的规律,但受到穿孔结构、泡沫铝原本存在的缺陷组成的通透结构和气泡孔在穿孔过程中被打开的小开口等因素的影响。  相似文献   

6.
Tensile property of Al-Si closed-cell aluminum foam   总被引:3,自引:3,他引:3  
1Introduction The unique properties of metallic foams make them useful in a number of potential application fields including damping,electromagnetic shielding,heat exchange,sound insulation,sound absorption,and energy absorption[1?4].The closed-cell alumi…  相似文献   

7.
采用反重力渗流法制备开孔泡沫铝(英文)   总被引:1,自引:0,他引:1  
采用一套新颖的反重力渗流装置制备开孔泡沫铝。研究表明,采用反重力渗流法所制备的泡沫铝,表现出优良的力学性能且几乎没有渗流不足与渗流过度的缺陷;泡沫铝中的空隙度对其力学性能的影响很大,泡沫铝的屈服应力与平台应力均随孔隙度的降低而升高;升高预热温度与保压压强可有效降低泡沫铝中的空隙度。  相似文献   

8.
Abstract

Lightweight materials are becoming increasingly important in construction because of the potential for savings in resources and energy. The use of cellular materials is a promising approach to reduce the weight of components further. In the last decade, significant progress has been made in the production of aluminium foams. However, the lack of techniques for the further processing of these new materials has so far prevented widespread industrial use. The present paper reports the results from laser welding of aluminium foam, and shows that the process is a productive joining method for this innovative material. Because of the spatially limited energy input of the laser, a collapse of the foam structure can be effectively avoided. Based on the investigations carried out on the welding of aluminium foams, the process has been transferred to the joining of cellular aluminium with solid materials. The characteristics of the seams were evaluated using micro-computer tomography and reflective light microscopy as well as static and dynamic strength tests.  相似文献   

9.
随着武器科技的发展,冲击波对掩体内部人员的伤害已经不能忽视。研发了新型自制泡沫铝复合材料,并通过实验得出泡沫铝复合材料的应力-应变曲线,采用数值模拟,对泡沫铝复合材料在爆炸荷载下,其抗冲击缓冲特性进行研究。结果表明,冲击波在泡沫铝复合材料中传播时,显示出明显的衰减特性和良好的吸能性。泡沫铝复合材料可作为新型抗冲击缓冲材料和结构简化。  相似文献   

10.
A new technique, powder compact foaming process for the production of aluminum foams has been studied in this article. According to this method, the aluminum powder is mixed with a powder foaming agent (Till2). Subsequent to mixing, the powder blend is hot compacted to obtain a dense semi-finished product. Upon heating to temperatures within the range of the melting point, the foaming agent decomposes to evolve gas and the semi-finished product expands into a porous cellular aluminum. Foaming process is the key in this method. Based on experiments, the foaming characteristics were mainly analyzed and discussed. Experiments show that the aluminum-foam with closed pores and a uniform cell structure of high porosity can be obtained using this method by adjusting the foaming parameters: the content of foaming agent and foaming temperature.  相似文献   

11.
SiCp/2024Al composite foams were manufactured by powder metallurgical methods using foaming agent CaCO3 in order to enrich the foam fabrication process and promote its development and extensive application. The effects of CaCO3 and SiC volume fractions on the foaming behaviours were investigated by means of SEM and Magiscan-2A image analysis technique. The influence of SiC content on the compressive behaviour was analyzed using Gleeble 1500 thermal simulation testing machine. The experimental results show that with increasing the foaming agent, the porosity and pore dimension increase first and decrease later. With increasing the reinforcement content, the porosity and pore dimension decrease. The compressive curves reveal that the introduction of SiC particles can improve compressive yield strength and energy absorption capacity. Meanwhile, it is found that SiCp/2024Al composite foams are the brittle foam materials.  相似文献   

12.
《Acta Materialia》2000,48(9):2349-2362
Aluminium foams were produced by applying the powder compact melting method, i.e. by mixing metal powders and powdered gas-releasing blowing agents and pressing them to a foamable precursor material after this. The resulting precursor was then foamed by heating it up to above its melting point inside an “expandometer”, which allowed for the volume and temperature to be measured throughout the entire process. The present studies comprise the effects of the aluminium alloy composition (AlSi7 and 6061), some of the pressing parameters of the foamable precursor material, the foaming temperature and the heating rate during foaming on the expansion behaviour of the foam. Moreover, the morphological and microstructural evolution of metal foams is investigated.  相似文献   

13.
Several methods are available for making metal foams. They allow to tailor their mechanical, thermal, acoustic, and electrical properties for specific applications by varying the relative density as well as the cell size and morphology. Foams have a very heterogeneous structure so that their properties may show a large scatter. In this paper, an aluminum foam produced by means of foaming of powder compacts and another one prepared via the infiltration process were analyzed and compared. Image analysis has been used as a useful tool to determine size, morphology, and distribution of cells in both foams and to correlate cell morphology with the considered manufacturing process. The results highlighted that cell size and morphology are strictly dependent upon the manufacturing method. This paper shows how some standard 2D morphological indicators may be usefully adopted to characterize foams whose structure derives from the specific manufacturing process.  相似文献   

14.
为了丰富泡沫材料制备工艺、推动其快速发展与广泛应用,以CaCO3为发泡剂采用粉末冶金法制备SiCp/2024Al泡沫复合材料。采用SEM和Magiscan-2A图像分析仪研究了CaCO3发泡剂和SiC颗粒的含量对发泡行为的影响,并且通过Gleeble 1500热模拟机分析了SiC颗粒的含量对压缩性能的影响。结果表明:随着发泡剂的增多,孔隙率和孔径先增加后减小。随着增强体含量的增加,孔隙率和孔径都减小。压缩曲线揭示加入增强体可以改善压缩屈服强度和吸能能力。SiCp/2024Al泡沫复合材料显示为脆性泡沫材料。  相似文献   

15.
The closed-cell aluminum foam reinforced by 1.5 and 3.0 wt.% fly ash particles were manufactured by molten body transitional foaming process. The backscattered electron image shows that fly ash particles distribute uniformly in the cell wall. The quasi-static compression tests were conducted. Results show that Al/Fly ash foams have stable compressive property and the sudden stress drop was not observed. The plateau stress increases nearly linearly with relative density. Moreover, the addition of fly ash particles improves the plateau stress. Also, the energy absorption property of Al/Fly ash foams increase with relative density and fly ash content. These can be attributed to the contribution of the compression of cell gas and the membrane stress in the cell wall.  相似文献   

16.
A cold repeated forming process of compacts for producing metal foams was developed in order to strongly bond powder particles. In this process, the compact undergoes severe plastic deformation for the strong bonding of particles by repeated backward extrusion and cup compression, and thus the compact largely foams owing to the accumulation of gas released from blowing agents inside the compact during heating. The cold repeated forming process without heating is much simpler than that for the conventional hot extrusion process. The relative density of the foam was decreased by adding silicon powder to the compact, and an aluminium foam having a relative density of 0.27 was obtained using two repeats of backward extrusion and cup compression, 1.5 mass% titanium hydride powder and 4 mass% silicon powder. In addition, a one-piece foam was successively produced from the bonding of two compacts during the foaming in a die. It was found that the cold repeated forming of compacts is effective for the production of metal foams.  相似文献   

17.
The infiltration casting fabrication process based on spherical CaCl2 space-holders and the compressive behavior including the mechanical performance and energy absorption capacity of open-cell aluminum foams were investigated.Open-cell aluminum foams with different porosities in the range of 63.1%to 87.3%can be fabricated by adjusting compression ratios of CaCl2 preforms prepared by precision hot-pressing.The compression tests show that a strain-hardening phenomenon always occurs especially for open-cell aluminum foam with low porosity,resulting in the inclining stress-strain curve in the plateau region.The energy absorption capacity of open-cell aluminum foam decreases with increasing porosity when compared at the same strain.However,when compared at a given stress,each foam can absorb the maximal energy among the five foams in a special stress range.Additionally,open-cell aluminum foam possesses the maximum energy absorption efficiency at its optimum operating stress.At this stress condition,the foam can absorb the highest energy compared with other foams at the same stress point.The optimum operating stress and the corresponding maximal energy absorption decrease with increasing the porosity.The optimum operating stress for energy absorption can also be determined similarly when taking into consideration of the lightweight extent of foams.  相似文献   

18.
利用同步辐射装置的SR-CT,通过图像的断层扫描及3D重建,对轧制复合-粉末冶金发泡工艺制备的泡沫铝夹芯板(AFS)进行了泡孔结构演化的研究,分析了发泡过程中孔隙率的变化及大尺寸连通孔的形成原因。研究结果表明:具有微米级空间分辨率的SR-CT可清晰地观测到泡孔萌生及生长各阶段的泡沫结构。泡孔在发泡15~30 s阶段生成,形状为垂直于轧制方向的类裂纹孔。发泡45 s时,泡孔开始发生明显合并,继续延长发泡时间易导致形成大尺寸连通孔。芯层泡沫铝的孔隙率在泡孔的萌生阶段及合并阶段增长幅度较大,减少混料时发泡剂的"团聚"及提高芯层粉末致密度可获得良好的芯层泡沫结构。  相似文献   

19.
新型材料的应用对低温装置的发展起具有重大意义。为提高低温蓄冷装置的温度均衡性,一种孔隙率为63%的开孔泡沫铝材料最近在一种低温蓄冷装置中进行了实验研究。实验测试了样品从50 K到170 K的热导率,测试结果显示开孔泡沫铝在测试温度区间内热导率随温度降低而升高,其平均值为22W·(m·K)~(-1)。实验测试了开孔泡沫铝热导率对采用泡沫铝低温蓄冷装置的性能的影响。蓄冷装置中采用的相变材料为氮。实验中主要测试值为蓄冷装置在降温过程和融化过程中的温度值。实验结果显示,此装置上、下部分的最大温差小于0.5 K,远小于不采用开孔泡沫铝时的温差。随着低温蓄冷装置热导率的提高,蓄冷装置上、下部温差以及单个温度测定的温度波动均减小。  相似文献   

20.
SiCP增强泡沫铝基复合材料的制备工艺研究   总被引:5,自引:1,他引:4  
将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法。讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决。在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号