首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One approach to testing concurrent programs is called reachability testing, which derives test sequences automatically and on‐the‐fly, without constructing a static model. Existing reachability testing algorithms are exhaustive in that they are intended to exercise all possible synchronization sequences of a concurrent program with a given input. In this paper, we present a new testing strategy, called t‐way reachability testing, that adopts the dynamic framework of reachability testing but selectively exercises a subset of synchronization sequences. The selection of the synchronization sequences is based on a combinatorial testing strategy called t‐way testing. We present an algorithm that implements t‐way reachability testing, and report the results of several case studies that were conducted to evaluate its effectiveness. The results indicate that t‐way reachability testing can substantially reduce the number of synchronization sequences exercised during reachability testing while still effectively detecting faults. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Structural testing of concurrent programs   总被引:1,自引:0,他引:1  
Although structural testing techniques are among the weakest available with regard to developing confidence in sequential programs, they are not without merit. The authors extend the notion of structural testing criteria to concurrent programs and propose a hierarchy of supporting structural testing techniques. Coverage criteria described include concurrency state coverage, state transition coverage and synchronization coverage. Requisite support tools include a static concurrency analyzer and either a program transformation system or a powerful run-time monitor. Also helpful is a controllable run-time scheduler. The techniques proposed are suitable for Ada or CSP-like languages. Best results are obtained for programs having only static naming of tasking objects  相似文献   

3.
One approach to testing concurrent programs, called reachability testing, generates synchronization sequences automatically and on-the-fly, without constructing any static models. In this paper, we present a general execution model for concurrent programs that allows reachability testing to be applied to several commonly used synchronization constructs. We also present a new method for performing reachability testing. This new method guarantees that every partially ordered synchronization sequence will be exercised exactly once without having to save any sequences that have already been exercised. We describe a prototype reachability testing tool called RichTest and report some empirical results, including a comparison between RichTest and a partial order reduction-based tool called VeriSoft. RichTest performed significantly better for the programs in our study.  相似文献   

4.
Reachability testing is an approach to verifying concurrent programs. During reachability testing, every partially ordered synchronization sequence of a program with a given input is exercised exactly once. In this paper, we present the design and implementation of a distributed reachability testing algorithm for a cluster of workstations. This algorithm allows different test sequences to be exercised concurrently by different workstations without any synchronization, and without any duplication of sequences among workstations. Dynamic load balancing is performed using a work‐stealing scheme. A novel aspect of this scheme is that work‐stealing requests progress in rounds. This round‐based structure identifies overloaded workstations to target for work stealing. Empirical studies show good speedup for four benchmark Java programs and one Lotos specification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
We present a method for selecting test sequences for concurrent programs from labeled transitions systems (LTS). A common approach to selecting test sequences from a set of LTSs is to derive a global LTS, called the reachability graph, and then force deterministic program executions according to paths selected from the graph. However, using a reachability graph for test path selection introduces a state explosion problem. To overcome this problem, a reduced graph can be generated using incremental reachability analysis, which consists of repeatedly generating a reachability graph for a subset of LTSs, reducing this graph, and using the reduced graph in place of the original LTSs. Unfortunately, existing incremental reachability analysis techniques generate reduced graphs with insufficient information for deterministic testing. We present an incremental approach to testing concurrent programs. Incremental testing consists of incremental reachability analysis for test path selection and deterministic testing for test execution. We define a new type of reachability graph for incremental analysis, called an annotated labeled transition system (ALTS). An ALTS is an LTS annotated with information necessary for deterministic testing. We propose practical coverage criteria for selecting tests paths from an ALTS and present an ALTS reduction algorithm. The results of several case studies are reported  相似文献   

6.
Concurrent programs are replacing the sequential programs as they utilize the true capabilities of multicore architecture. The extensive use of multicore systems and multithreaded paradigms warrants more attention to the testing of the concurrent programs. The testing concurrent program is not a new field as it has been more than 40 years because the first problem related to the testing concurrent program was addressed by the researchers. The field covers various domains, which include concurrency problems, testing approaches, techniques, graphical representations, tools, and subject systems. This paper aims at providing an overview of research in the domain of testing concurrent programs by classifying it into eight categories: (a) reachability testing, (b) structural testing, (c) model‐based testing, (d) mutation‐based testing, (e) slicing‐based testing, (f) formal methods, (g) random testing, and (h) search‐based testing. The survey is focused on the techniques applied, methodologies followed, and tools used in these aforementioned approaches. Furthermore, the gaps are also identified in different approaches. The paper concludes with the consolidation of various testing parameters along with the future directions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Reachability testing is an important approach to testing concurrent programs. It generates and exercises synchronization sequences automatically and on-the-fly without saving any test history. Existing reachability testing can be classified into exhaustive and t-way testing. Exhaustive testing is impractical in many cases while t-way testing may decrease the capability of fault detection in some cases. In this paper, we present a variable strength reachability testing strategy, which adopts the dynamic framework of reachability testing and uses a variable strength combinatorial strategy. Different parameter groups are provided with different covering strength. Variable strength testing covers no t-way combinations but the necessary combinations of parameters having mutual interactions in a concurrent program. It is more reasonable than t-way testing because uniform interactions between parameters do not often exist in concurrent systems. We propose a merging algorithmthat implements the variable strength combinatorial testing strategy and conduct our experiment on several concurrent programs. The experimental results indicate that our variable strength reachability testing reaches a good tradeoff between the effectiveness and efficiency. It can keep the same capability of fault detection as exhaustive reachability testing while substantially reducing the number of synchronization sequences and decreasing the execution time in most cases.  相似文献   

8.
We describe the Modern Multithreading (MM) class library. MM is a class library consisting of thread and synchronization classes that provide significant support for testing and debugging multithreaded programs. The synchronization classes implement commonly used synchronization objects such as semaphores, monitors, and asynchronous and synchronous message passing channels, for programs that run on a single computer or on a distributed system. MM uses controlled executions to provide program tracing and replay and to support a number of implementation-based and specification-based testing techniques, including non-deterministic and deterministic testing and several forms of reachability testing. MM is portable and easy to use, and has been implemented in Java and C++, with C++ versions for the POSIX Pthreads library and for the Windows Win32 API.  相似文献   

9.
10.
Jason Gait 《Software》1985,15(6):539-554
This paper reports on an experimental debugger for concurrent programs. Design objectives include a showing of greatest usefulness when dealing with multiprocess interactions, creation of a simplified more approachable interface for programmers, allowance for the systematic organization (and limitation) of debugging information by programmers, reflection of a natural view of concurrency, and portability. The design responds to a perceived need for debugging techniques applicable in systems of concurrent, communicating, asynchronous processes. During debugging sessions, a user is able to dynamically explore interprocess synchronization points, parallel actions and deadlock situations. The programmer interface is based on a transparent window multiplexer providing a set of windows for each concurrent process. The window manager interactively maps interesting windows to programmer-specified viewscreen locations, while relegating temporarily uninteresting windows to the background. In implementing a debugger for concurrent programs, a principal concern is the probe effect, or the possibility that the debugger itself masks synchronization errors in the program being debugged. For the examples explored, the probe effect was not observed to limit the localization of implanted synchronization errors.  相似文献   

11.
原子性保证并行程序中的多线程以正确方式交互,大多主流的编程语言都没有提供确保原子性的内部机制.为了提高测试程序原子性的效率与准确性,提出了一种自动检测并行程序中违反原子性错误的算法.基于状态转换,建立了原子性的形式化定义.在此基础上,利用线程锁设计了具体的算法模型以及实现中需注意的细节,同时给出自动修正错误的设计思路和建议.结合常用的基准数据结构,对模型和算法进行了实验,实验结果表明了该算法的正确性和有效性.  相似文献   

12.
Predictive analysis aims at detecting concurrency errors during runtime by monitoring a concrete execution trace of a concurrent program. In recent years, various models based on the happens-before causality relations have been proposed for predictive analysis. However, these models often rely on only the observed runtime events and typically do not utilize the program source code. Furthermore, the enumerative algorithms they use for verifying safety properties in the predicted traces often suffer from the interleaving explosion problem. In this paper, we introduce a precise predictive model based on both the program source code and the observed execution events, and propose a symbolic algorithm to check whether a safety property holds in all feasible permutations of events of the given trace. Rather than explicitly enumerating and checking the interleavings, our method conducts the search using a novel encoding and symbolic reasoning with a satisfiability modulo theory solver. We also propose a technique to bound the number of context switches allowed in the interleavings during the symbolic search, to further improve the scalability of the algorithm.  相似文献   

13.
A subset of ADA is introduced, ADA-CF, to study the basic synchronization and communication primitive of ADA, the rendezvous. Basing ourselves on the techniques introduced by Apt, Francez and de Roever for their CSP proof system, we develop a Hoare-style proof system for proving partial correctness properties which is sound and relatively complete. The proof system is then extended to deal with safety, deadlock, termination and failure. No prior exposure of the reader to parallel program proving techniques is presupposed. Two non-trivial example proofs are given of ADA-CF programs; the first one concerns a buffered producer-consumer algorithm, the second one a parallel sorting algorithm due to Brinch Hansen. Features of ADA expressing dynamic process creation and realtime constraints are not covered by our proof methods. Consequently, we do not claim that the methods described can be extended to full ADA without serious additional further research.  相似文献   

14.
Low-latency, concurrent checkpointing for parallel programs   总被引:2,自引:0,他引:2  
Presents the results of an implementation of several algorithms for checkpointing and restarting parallel programs on shared-memory multiprocessors. The algorithms are compared according to the metrics of overall checkpointing time, overhead imposed by the checkpointer on the target program, and amount of time during which the checkpointer interrupts the target program. The best algorithm measured achieves its efficiency through a variation of copy-on-write, which allows the most time-consuming operations of the checkpoint to be overlapped with the running of the program being checkpointed  相似文献   

15.
Predicate abstraction and counterexample-guided abstraction refinement (CEGAR) have enabled finite-state model checking of software written in mainstream programming languages. This combination of techniques has been successful in analysing system-level sequential C code. In contrast, there is little evidence of fruitful applications of CEGAR to shared-variable concurrent software. We attribute this gap to the lack of abstraction strategies that permit a scalable analysis of the resulting multi-threaded Boolean programs. The goal of this paper is to close this gap. We have developed a symmetry-aware CEGAR technique: it takes into account the replicated structure of programs that consist of many threads executing the same procedure, and generates a Boolean program template whose multi-threaded execution soundly overapproximates the original concurrent program. State explosion during model checking parallel instantiations of this template can now be absorbed by exploiting symmetry. We have implemented our method in a tool, SymmPa, and demonstrate its superior performance over alternative approaches on a range of synchronisation programs.  相似文献   

16.
Innovations in Systems and Software Engineering - We present in this paper a new approach to the static analysis of concurrent programs with procedures. To this end, we model multi-threaded...  相似文献   

17.
Developing high‐quality, error‐free message‐passing concurrent programs is not trivial. Although a number of different primitives with associated semantics are available to assist such development, they often increase the complexity of the testing process. In this paper, we extend our previous test model for message‐passing programs and present new structural testing criteria, taking into account additional features used in this paradigm, such as collective communication, non‐blocking sends, distinct semantics for non‐blocking receives, and persistent operations. Our new model also recognizes that sender primitives cannot always be matched with every receive primitive. This improvement allows us to remove statically a significant number of infeasible synchronization edges that would otherwise have to be analyzed later by the tester. In this paper, the test model is presented using the Message‐Passing Interface standard; however, our new model has been designed to be flexible, and it can be configured to support a range of different message‐passing environments or languages. We have carried out case studies showing the applicability of the new test model to represent message‐passing programs and also to reveal errors, mainly those errors related to inter‐process communication. In addition to increasing the number of features supported by the test model, we have also reduced the overall cost of testing significantly. Our case studies suggest that the number of synchronization edges can be reduced by up to 93%, mainly by eliminating infeasible edges between unmatchable communication primitives. The main contribution of the paper is to present a more flexible test model that provides improved coverage for message‐passing programs and at the same time reduces the cost of testing significantly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
提出了一种新的并行Java程序异常处理的监护模型。该模型针对并行Java程序异步信息传递方式进行异常处理。当并行Java程序的某个线程出现异常时,该线程的监护模块把检测到的异常情况的信息传递到其它线程的监护模块,每个线程根据当前事项与异常事项的向量时钟关系,对当前事项进行回滚或停止操作,以达到对并行Java程序的保护。过去一些并行程序的监护方案是在信息交换的基础上把并行程序结构化为许多原子行为,把多个并行异常当作单个异常进行处理,具有较大的局限性。提出的监护模型是从全局上对并行Java程序的异常情况进行处理,并指导每个线程根据自身情况作出相应反映。实验证明提出的新的并行Java程序监护模型具有较强的实际操作性,并能有效地保护并行Java程序。  相似文献   

19.
Unified Modeling Language (UML) activity diagrams are widely used to model concurrent interaction among multiple objects. In this paper, we propose a transformation‐based approach to generating scenario‐oriented test cases for applications modeled by UML activity diagrams. Using a set of transformation rules, the proposed approach first transforms a UML activity diagram specification into an intermediate representation, from which it then constructs test scenarios with respect to the given concurrency coverage criteria. The approach then finally derives a set of test cases for the constructed test scenarios. The approach resolves the difficulties associated with fork and join concurrency in the UML activity diagram and enables control over the number of the resulting test cases. We further implemented a tool to automate the proposed approach and studied its feasibility and effectiveness using a case study. Experimental results show that the approach can generate test cases on demand to satisfy a given concurrency coverage criterion and can detect up to 76.5% of seeded faults when a weak coverage criterion is used. With the approach, testers can not only schedule the software test process earlier, but can also better allocate the testing resources for testing concurrent applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents some issues related to the design and implementation of a concurrency analysis tool able to detect deadlock situations in Java programs that make use of multithreading mechanisms. An abstract formal model is generated from the Java source using the Java2Spin translator. The model is expressed in the PROMELA language, and the SPIN tool is used to perform its formal analysis. The paper mainly focuses on the design of the Java2Spin translator. A set of experiments, carried out to evaluate the performances of the analysis tool, is also presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号