首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The authors consider the problem of finding a single compensator which stabilizes a plant having both parameter variation and high-frequency unstructured uncertainty. An uncertain system model is proposed to characterize plants containing those two different uncertainties. Closed-loop stability criteria are then proposed for the model. Robust stabilizability for single-input single-output (SISO) systems is studied. A number of assumptions describing the set of admissable SISO plants are imposed. The satisfaction of these assumptions guarantees the existence of a proper stable compensator C(s) achieving robust stabilization. The algorithm used for controller design is recursive in nature and allows the designer to select one compensator coefficient at a time. Also, the minimum order of the desired stabilizer C(s) depends only on the largest relative degree of the nominal plants, which often leads to a lower-order compensator  相似文献   

2.
The problem of tightly bounding and shaping the frequency responses of two objective functions Ti(s)( i=1,2) associated with a closed-loop system is considered. It is proposed that an effective way of doing this is to minimize (or bound) the function max {∥T1(s)∥ , ∥T2(s)∥} subject to internal stability of the closed-loop system. The problem is formulated as an H control problem, and an iterative solution is given  相似文献   

3.
The commenter argues that the result of the above-titled work (see ibid., vol.37, no.10, p.1558-1561, Oct. 1992) is incorrect. It is pointed out that when sampling a continuous-time system G(s ) using zero-order hold, the zeros of the resulting discrete-time system H(z) become complicated functions of the sampling interval T. The system G(s) has unstable continuous-time zeros, s=0.1±i. The zeros of the corresponding sampled system start for small T from a double zero at z=1 as exp(T(0.1±i )), i.e., on the unstable side. For T>1.067 . . . the zeros become stable. The criterion function of the above-titled work, F(T)=G*(jωs/2)= H(-1)T/2, is, however, positive for all T, indicating only stable zeros. The zero-locus crosses the unit circle at complex values  相似文献   

4.
Explicit expressions for two different cascade factorizations of any detectable left invertible nonminimum phase systems are given. The first one is a well known minimum phase/all-pass factorization by which all nonminimum phase zeros of a transfer function G(s) are collected into an all-pass factor V(s), and G (s) is written Gm(s)V$ where Gms is considered as a minimum phase image of G(s). The second one is a new cascade factorization by which G(s) is rewritten as GM( s)U(s) where U(s) collects all `awkward' zeros including all nonminimum phase zeros of G( s). Both Gm(s) and GM(s) retain the given infinite zero structure of G(s). Further properties of G m(s), GM(s), and U (s) are discussed. These factorizations are useful in several applications including loop transfer recovery  相似文献   

5.
Simultaneous controller design for linear time-invariant systems   总被引:1,自引:0,他引:1  
The use of generalized sampled-data hold functions (GSHF) in the problem of simultaneous controller design for linear time-invariant plants is discussed. This problem can be stated as follows: given plants P1, P2, . . ., PN , find a controller C which achieves not only simultaneous stability, but also simultaneous optimal performance in the N given systems. By this, it is meant that C must optimize an overall cost function reflecting the closed-loop performance of each plant when it is regulated by C. The problem is solved in three aspects: simultaneous stabilization, simultaneous optimal quadratic performance, and simultaneous pole assignment in combination with simultaneous intersampling performance  相似文献   

6.
Let φ(s,a)=φ0(s,a)+ a1φ1(s)+a2 φ2(s)+ . . .+akφ k(s)=φ0(s)-q(s, a) be a family of real polynomials in s, with coefficients that depend linearly on parameters ai which are confined in a k-dimensional hypercube Ωa . Let φ0(s) be stable of degree n and the φi(s) polynomials (i⩾1) of degree less than n. A Nyquist argument shows that the family φ(s) is stable if and only if the complex number φ0(jω) lies outside the set of complex points -q(jω,Ωa) for every real ω. In a previous paper (Automat. Contr. Conf., Atlanta, GA, 1988) the authors have shown that -q(jω,Ωa ), the so-called `-q locus', is a 2k convex parpolygon. The regularity of this figure simplifies the stability test. In the present paper they again exploit this shape and show that to test for stability only a finite number of frequency checks need to be done; this number is polynomial in k, 0(k3), and these critical frequencies correspond to the real nonnegative roots of some polynomials  相似文献   

7.
8.
The minimal realization of a given arbitrary transfer function matrix G(s) is obtained by applying one orthogonal similarity transformation to the controllable realization of G( s). The similarity transformation is derived by computing the QR or the singular value decomposition of a matrix constructed from the coefficients of G(s). It is emphasized that the procedure has not been proved to be numerically stable. Moreover, the matrix to be decomposed is larger than the matrices factorized during the step-by-step procedures given  相似文献   

9.
Simple formulas are presented to compute the internally balanced minimal realization and the singular decomposition of the Hankel operator of a given continuous-time p×m stable transfer function matrix E(s)/d(s). The proposed formulas involve the Schwarz numbers of d(s) and the singular eigenvalues-eigenmatrices of a suitable finite matrix. Similar results are also obtained for a given discrete-time transfer function matrix  相似文献   

10.
A parallel algorithm is proposed for the two-dimensional discrete Fourier transform (2-D DFT) computation which eliminates interprocessor communications and uses only O(N) processors. The mapping of the algorithm onto architectures with broadcast and report capabilities is discussed. Expressions are obtained for estimating the speed performance on these machines as a function of the size N×N of the 2-D DFT, the bandwidth of the communications channel, the time for an addition, the time T( FN) for a single processing element to perform an N-point DFT, and the degree of parallelism. For single I/O channel machines that are capable of exploiting the full degree of parallelism of the algorithm, attainable execution times are as low as the time T(FN) plus the I/O time for data upload and download. An implementation on a binary tree computer is discussed  相似文献   

11.
The problem of absolute stability in a vibrational feedback controller is introduced and discussed. It is shown that for any rational G(s)=n(s)/d(s ) with d(s) Hurwitz and deg d(s) -deg n(s)=1 there exists a linear dynamic periodic controller that ensures, in a certain sense, the infinite sector of absolute stability. This implies that an additional dynamical element, inserted in the feedback loop, may lead to improvements in the robustness of nonlinear systems  相似文献   

12.
The eigenvalue assignment problem of a T-periodic linear system using discrete periodic state feedback gains is discussed. For controllable systems, an explicit formula for the feedback law is given that can be used for the arbitrary assignment of the eigenvalues of Φc1(T,0), the closed-loop state transition matrix from 0 to T. For the special case of periodic systems controllable over one period, this control law can be used to obtain any desired Φc1(T,0)  相似文献   

13.
Consider a set A={A1,A2 ,. . ., An} of records, where each record is identified by a unique key. The records are accessed based on a set of access probabilities S=[s1,s2 ,. . ., sN] and are to be arranged lexicographically using a binary search tree (BST). If S is known a priori, it is well known that an optimal BST may be constructed using A and S. The case when S is not known a priori is considered. A new restructuring heuristic is introduced that requires three extra integer memory locations per record. In this scheme, the restructuring is performed only if it decreases the weighted path length (WPL) of the overall resultant tree. An optimized version of the latter method, which requires only one extra integer field per record has, is presented. Initial simulation results comparing this algorithm with various other static and dynamic schemes indicates that this scheme asymptotically produces trees which are an order of magnitude closer to the optimal one than those produced by many of the other BST schemes reported in the literature  相似文献   

14.
For nonlinear systems it is not a mathematically obvious fact that the simplest feedback system yields equations which are solvable, even when the gain in the loop is ⩽1. The authors treat this and more general issues. For example, it is not known (for a continuous-time system) if unity feedback for a plant C with gain <1 produces a well-posed system. It is shown that if the gain of C is <1 and C also loses sufficient efficiency at high frequency, then indeed the feedback system is well posed. The hypothesis that the gain of C is <1 can be replaced by the reasonable assumption that C saturates on large enough signals, and well posedness is still obtained. This approach also applies directly to electrical circuit connections. It is proved that rather general connections of amplifiers are well posed under the assumption that the amplifiers saturate and that they lose efficiency at high frequency  相似文献   

15.
Let Λ be a finite plaintext alphabet and V be a cypher alphabet with the same cardinality as Λ. In all one-to-one substitution cyphers, there exists the property that each element in V maps onto exactly one element in Λ and vice versa. This mapping of V onto Λ is represented by a function T*, which maps any vV onto some λ∈Λ (i.e., T*(v)=λ). The problem of learning the mapping of T* (or its inverse (T *)-1) by processing a sequence of cypher text is discussed. The fastest reported method to achieve this is a relaxation scheme that utilizes the statistical information contained in the unigrams and trigrams of the plaintext language. A new learning automaton solution to the problem called the cypher learning automaton (CLA) is given. The proposed scheme is fast, and the advantages of the scheme in terms of time and space requirements over the relaxation method have been listed. Simulation results comparing both cypher-breaking techniques are presented  相似文献   

16.
Let a family of polynomials be P(s)=t 0sn+t1s n±1 + . . . + tn where 0<ajtjb j. V.L. Kharitonov (1978) derived a necessary and sufficient condition for the above equation to have only zeros in the open left-half plane. The present authors derive some similar results for the equation to be strictly aperiodic (distinct real roots)  相似文献   

17.
The problem of finding one compensator which simultaneously stabilizes a family of single-input-single-output (SISO) discrete-time plants is considered. The family of plants is described by the transfer functions {Pz, q): qQ}, which are generated via a z-transformation. A number of assumptions describing the set of allowable plants are then given. These assumptions include some regularity conditions on the plants and a minimum-phase requirement. The satisfaction of these assumptions guarantees the existence of a strictly proper stable compensator C(z) for simultaneous stabilization. An iterative computation method is provided for control design  相似文献   

18.
A formal analysis of the fault-detecting ability of testing methods   总被引:1,自引:0,他引:1  
Several relationships between software testing criteria, each induced by a relation between the corresponding multisets of subdomains, are examined. The authors discuss whether for each relation R and each pair of criteria, C1 and C2 , R(C1, C2) guarantees that C1 is better at detecting faults than C2 according to various probabilistic measures of fault-detecting ability. It is shown that the fact that C 1 subsumes C2 does not guarantee that C1 is better at detecting faults. Relations that strengthen the subsumption relation and that have more bearing on fault-detecting ability are introduced  相似文献   

19.
The author analyzes the computational complexity of an algorithm by F.D. Groutage et al. (ibid., vol.AC-32, no.7, p.635-7, July 1987) for performing the transformation of a continuous transfer function to a discrete equivalent by a bilinear transformation. Groutage et al. defend their method by noting that their technique is not limited to the bilinear transformation. Rather, it can be extended to any higher-order integration rule (Simpson, Runge-Kutta, etc.), or to any higher-order expansion of the ln function. In general, using the method, s can be any appropriate mapping function s=f (z)  相似文献   

20.
A frame approach to the H superoptimal solution which offers computational improvements over existing algorithms is given. The approach is based on interpreting s numbers as the largest gains between appropriately defined spaces. Some useful bounds on Hankel singular values and s numbers are derived  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号