首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
综述了一维纳米结构的锂离子电池正极材料V_2O_5的研究进展,阐述了一维纳米结构V_2O_5(纳米线、纳米棒、纳米管、纳米带)的制备及其表面改性和复合改性的方法,其中包括水热法、静电纺丝法、模板法等,总结了一维纳米结构的V_2O_5材料在二次锂离子电池正极材料的应用。最后,就一维V_2O_5纳米材料在锂离子电池中的应用前景进行了展望。  相似文献   

2.
锂离子电池正极材料LiMn_2O_4的合成与性能改进   总被引:2,自引:0,他引:2  
用传统的高温固相法合成了尖晶石型LiMn_(195)La_(0.05O4)锂离子电池正极材料.通过充-放电测试,其最高容量为117.1mAh/g,经过50次循环后容量为108.4 mAh/g,平均每次循环的容量衰减率为0.15%.利用X射线衍射仪(XRD)和电子扫描电镜(SEM)对材料进行表征.XRD测试结果表明,样品为尖晶石结构;SEM结果表明,样品颗粒形状理想,粒径分布均匀.  相似文献   

3.
锂离子电池以其优异的性能备受瞩目,它在电源储能电池方面的发展也受到人们的普遍关注,而正极材料是锂离子电池性能提高的关键所在。本文介绍了锂离子电池的工作原理和结构组成,简述了锂离子电池的正极材料的种类和制备方法,综述了新型正极材料的改性和电化学性能研究方法,并对锂离子电池正极材料的发展前景进行了展望。  相似文献   

4.
以Li3PO4和Fe(3PO4).28H2O为原料,采用固相法成功制备了锂离子电池正极材料LiFePO4,并讨论了Li3PO4用量对材料的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试等手段对最终产物的物相、形貌和电化学性能进行了表征。结果表明,按计量比制备的LiFePO4样品具有较好的电化学性能,以0.1、0.5、1和5 C(1C=150 mA/g)的倍率进行充放电,首次放电比容量分别为135.6、123.8、116.2和56.5 mAh/g。磷酸锂过量8%制备的样品具有较好的高倍率性能,5C时放电比容量为80.3 mAh/g;而磷酸锂过量30%的样品则具有很好的小倍率放电比容量,0.1C时放电比容量为151.1 mAh/g。  相似文献   

5.
电动汽车续航里程的提升主要依赖于锂离子电池的能量密度,其中发展高容量的正极材料成为关键。富锂锰基层状氧化物(LLOs)和高镍三元层状氧化物(NCM,Ni≥80%)等高容量正极材料成为了研究热点,其前体的开发对正极材料电化学性能的发挥有重要的影响。本文从工业化的角度对共沉淀法制备LLOs和NCM正极材料前体的反应过程和影响因素进行了介绍,分析了球形团聚体、单晶和浓度梯度等正极材料的结构和性能,并详细阐述了正极材料中晶面取向调控、掺杂及表界面处理等改性策略的原理及优缺点。文章指出,综合来看单晶材料表现出较好的循环稳定性和热稳定性,但倍率性能有待进一步提升。浓度梯度正极材料不仅保持了高容量特性,还兼顾良好的结构稳定性和热稳定性,有望突破高容量正极材料进一步发展的技术瓶颈。最后,基于本文作者课题组在高容量正极材料方面的研究,对正极材料的未来发展趋势给出了一些建议。  相似文献   

6.
根据相关研究和资料可知,锂离子电子电池正极材料主要有如下几种,一是LiCoO2;二是LiNiO_2;三是LiMn_2O_4;四是LiFePO_4等等。在三元系统Li_2O-MnO_2-SiO_2中采用高温固相法合成锂电子电池正极材料不同配比的Li2MSiO_4,同时结合x射线衍射光谱法、SEM等操作,以及电化学性能测试表征Li_2MSiO_4在不同配比情况下正极材料的结构、电化学性能、外貌颗粒。结果发现:在烧结温度六百摄氏度和三十小时保温时间下,样品充放电比容量最高是:Li、Mn、Si的比例是4.02:13.66:1的状态。  相似文献   

7.
在Li2O-MnO2-SiO2三元系统中通过高温固相法合成具有不同配比Li2MSiO4(M=Fe、Mn等)的锂离子电池正极材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学性能测试表征不同配比条件下Li2MSiO4(M=Fe、Mn等)正极材料的微观结构,颗粒形貌及电化学性能。结果表明:烧结温度600℃,保温时间30 h下,Li∶Mn∶Si比例为4.04∶13.76∶1时的样品充放电比容量最高。  相似文献   

8.
锂离子电池正极材料LiFePO4的电化学性能改进   总被引:4,自引:0,他引:4       下载免费PDF全文
引言 随着社会的进步,人们对化学电源提出了高能量、长寿命、低成本、低环境污染的要求.虽然锂离子蓄电池目前已经实现了商品化,但正极嵌锂材料结构与性能的研究,以及如何提高容量和降低成本是锂离子蓄电池进一步被开发和应用的关键.  相似文献   

9.
朱军峰  闫萌萌  朱婷  高薇春 《精细化工》2021,38(11):2341-2346
采用原子转移自由基聚合法制备了聚(4-丙烯酰胺基-2,2,6,6-四甲基哌啶-1-氧基)-氧化石墨烯(PTAm-GO)复合材料.利用FTIR、1HNMR、电子顺磁共振(EPR)、TGA和SEM对其结构进行了表征.将其作为锂离子电池正极材料组装成半电池进行测试.结果表明,该复合材料是氮氧自由基聚合物PTAm化学接枝的GO.PTAm-GO比纯PTAm具有更好的储锂能力和电化学性能.在200 mA/g电流密度下,经过300次充放电循环后,PTAm-GO和纯PTAm电极的放电比容量分别为138和39 mA·h/g.PTAm-GO和PTAm电极的电荷转移电阻分别为96和179?,表明PTAm-GO是非常有应用前景的锂离子电池活性材料.  相似文献   

10.
为了提高LiNiO2的电化学性能,用固相反应法制备了铌掺杂LiNiO2材料,并用X射线衍射(XRD)分析、恒电流滴定技术(GITT)、电化学阻抗谱(EIS)等方法研究铌掺杂量对LiNiO2的结构和性能的影响。结果表明适量的铌(Nb)掺杂可以提高LiNiO2层状结构的有序程度,降低Li+/Ni2+混合程度,降低电荷转移阻抗,提高活性材料中锂离子的扩散系数。其中LiNi0.99Nb0.01O2在0.5C循环100次的容量保持率为91.4%,5C时放电比容量为143 mA·h/g。而未掺杂铌的LiNiO2在相同条件下的容量保持率和比容量仅为69.2%和127 mA·h/g。结果说明铌掺杂能够有效提高LiNiO2的电化学性能。  相似文献   

11.
刘微  谭伟  白阳  王宇  贾晓林 《硅酸盐学报》2011,39(10):1622-1628
以水热法合成了尖晶石型Li4Ti5O12微球,研究了氢氧化锂用量、水热时间、热处理温度对Li4Ti5O12微球性能的影响,分析了合成机理。用X射线衍射仪分析样品结构,用扫描电子显微镜、透射电子显微镜表征产物的形貌,并研究了样品的恒流充放电性能和循环稳定性。结果表明:当0.2g水解产物与2.55mmolLiOH·H2O1...  相似文献   

12.
锂离子电池以其优异的性能而成为近年来研究热点之一,而正极材料是锂离子电池性能提高的关键所在,本文综述了近年来发展起来的典型锂离子电池正极材料的制备、特点及性能,并对锂离子电池正极材料的发展趋势进行了展望。  相似文献   

13.
以FeSO4·7H2O为原料,通过两步热处理合成碱式硫酸铁样品,考察其作为锂离子电池正极材料的电化学性能。实验结果表明,所合成的FeOHSO4样品为具有单斜结构的纯晶相材料,该材料的首次放电容量达135 mAh·g-1,平均电压平台为3.2 V,50次循环后,放电容量衰减为73 mAh·g-1。该材料合成工艺简单,成本低廉,显示了良好的工业应用前景。  相似文献   

14.
尖晶石型LiMn2O4由于其合成工艺条件简单、环境友好、原料价格低等诸多优点被认为是最具有应用前景的锂离子电池正材料,但其在较高的温度下循环稳定性能较差,容量衰减快,从而严重影响了其商业化应用。文章阐述了科研人员为了改善材料的容量衰减快、高温性能及大流充放电性能而采用的离子掺杂和表面包覆改性的研究进展。  相似文献   

15.
锂离子电池正极材料LiFePO4/C的合成及性能研究   总被引:3,自引:0,他引:3  
以葡萄糖为碳源,利用高温固相法合成了橄榄石型LiFePO2/C。XRD结果表明葡萄糖的加入并没有改变LiFePO4的结构。SEM观察到C的包覆可以有效抑制颗粒的长大,且使颗粒形状更为规则。以合成材料为正极的锂离子电池的充放电测试结果表明,在0.1C的电流密度下,样品30的首次充放电容量达到1575mAin·g^-1,第三次容量达到164.9mAh·g^-1,接近理论容量,经过10次循环后,仍保持在161.7mAh·g^-1,循环性能稳定。循环伏安特性表明,在循环过程中,锂离子插入和脱出具有单一的可逆机制。  相似文献   

16.
黄小文 《广州化工》2014,(24):70-71,93
磷酸铁锂是一种很有应用前景的锂离子电池正极材料,由于其电导率低限制了它的广泛应用,而碳包覆是提高其电化学性能的方法之一。以食用蔗糖为碳源在不同的温度下制备了LiFePO4/C样品,并采用扫描电镜、 X-射线衍射和电化学性能测试等技术对样品进行了表征,发现样品为橄榄石型结构,同时在700℃制备的样品具有较好的循环性能和比容量。  相似文献   

17.
本文采用高温固相法合成锂离子电池正极材料LiNixCo1-xO2,主要探讨了x值及烧成温度对LiNixCo1-xO2的影响。通过XRD、SEM及电化学性能测试(恒流恒压充放电)等对其进行表征。结果表明:焙烧温度为760℃、x=0.8时制备的锂离子电池正极材料LiNi0.8Co0.2O2的结构和电化学性能最好。  相似文献   

18.
董怡辰  王振波  秦华 《炭素》2011,(1):16-20
概述了碳材料包覆对动力锂离子电池正极材料LiFePO4、LiNi0.5Mn1.5O4和Li[Nil/3Co1/3Mn1/3】O2电化学性能的影响,综述了不同碳源炭化后形成的碳的特性及对各种电极材料性能的影响,总结了碳包覆动力锂离子电池正极材料的发展方向。  相似文献   

19.
锂离子电池正极材料Li2Mn0.95Mg0.05SiO4的合成和电化学性能   总被引:3,自引:3,他引:0  
以Li2SiO3、Mn(CH3COO)2·4H2O和Mg(CH3COO)2·4H2O为原料,采用高温固相反应法成功合成出Li2Mn0.95Mg0.05SiO4锂离子电池正极材料.采用XRD、扫描电镜等技术分析了合成粉末的相组成、结构和微观形貌,利用电池测试仪测试了正极材料的电化学性能.研究结果表明,固相合成的粉末主相为Li2Mn0.95Mg0.05SiO4,同时存在少量的杂质,产物表面形貌、粒度均与未掺杂样品类似,二者均为非球形颗粒,颗粒尺寸约为100~500 nm.电化学测试结果表明,Mg掺杂后,正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Mg掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

20.
《化工设计通讯》2019,(11):199-200
锂离子电池具有高电压、高能量密度、大容量、长寿命等优点,可以循环性的使用。锂离子电池的使用对生态环境所造成的影响比较微弱,是当前我国电动汽车二次电池使用频率最高的一类。在锂离子电池中,正极材料是其重要的组成部分,正极材料的性能会直接影响锂离子电池自身的使用性能,同时还会影响到电池制备的成本费用,想要实现我国电动汽车产业化的目标,就需要注重锂离子电池正极材料研究工作的开展。不断地提升电化学性能,消除安全隐患。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号