首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决城市轨道交通用直流牵引系统故障短路电流峰值大、开断寿命低、维护成本高的问题,提出了一种限流式直流断路方案.研究了电流基于电弧电压自然转移的原理;根据系统参数建立仿真模型,仿真了不同故障电流情况下的限流开断性能,验证限流式直流断路器的功能;将该直流断路器方案与其他四种典型的直流断路器进行了对比分析.研究结果表明:提出的限流式直流断路方案可实现3 ms故障电流截断、快速重合闸功能,并采用先限流后开断的方式,降低故障开断电流,提高了开断寿命.  相似文献   

2.
为了提高混合式直流断路器的开断能力,降低半导体器件的使用成本,提出了一种基于串联晶闸管强迫过零关断技术的具备双向开断能力的混合式直流断路器拓扑方案。在分析关断过程的基础上,推导了串联晶闸管阀与二极管阀组件反向恢复过程中均压回路的参数设计方法,然后以10 k V样机为例,开展了主支路和转移支路器件选型与参数设计,并搭建了10 k V直流断路器原理样机及其实验回路。研究结果表明:正常运行时,主支路由机械开关和少量的全控型半导体器件串联构成,其损耗较小;在开断电流时,故障电流首先转移至晶闸管阀支路,再通过放电回路注入反向电流迫使晶闸管阀过零关断,最后通过耗能支路吸收系统感性能量。原理样机实现了直流电压10 k V下短路电流峰值为8.8 k A的过零快速关断、且开断时间小于3 ms;转移支路可通过调整半导体器件的串联数量和选型大幅提升直流断路器的电压等级和故障电流耐受能力;串联二极管阀能在大电流关断暂态过程中抑制晶闸管器件的反向恢复过电压,降低晶闸管器件的损坏风险;在混合式直流断路器的换流和关断阶段,无需针对串联的晶闸管器件调整触发时间与匹配参数。综上所述,所提出的混合式直流断路器具有快速直流短路故障清除能力,可以作为未来柔性高压直流输电系统组网的工程实施方案之一。  相似文献   

3.
传统机械式直流断路器通过在直流电流上迭加一个振幅逐渐增大的振荡电流来制造一个"人工电流零点",完成电路开断。这将导致该断路器在开断时会承受很大的正向电流,增大对断路器开关触头的损伤。针对传统直流断路器存在的这一缺点提出了一种新型电流源型机电混合式直流断路器,利用电力电子器件构造换流电路,控制产生大小和波形均可控的叠加电流,在产生过零点的同时减小电流的正向幅值,能有效减小高压直流断路器分闸时产生的电弧,减小对直流开关触头的损伤,延长其寿命。通过MATLAB/Simulink仿真验证了该断路器成功开断工况电流和故障电流,并大幅降低了正向电流。进一步以正在筹建的蒙西特高压直流工程为例,通过PSCAD/ETMDC仿真平台,模拟该断路器作为直流金属回路转换开关成功开断直流线路故障电流并保持系统电压稳定的过程。仿真结果验证了所提出的新型直流断路器能够快速有效地开断直流线路故障电流,可以作为单极闭锁的后备动作方案。  相似文献   

4.
针对直流断路器的控制需求,基于电流转移型直流断路器开断原理,研制了直流断路器控制器。分析了直流断路器控制器的功能及其控制原理,并提出模块化设计方案。采用PLC作为主控芯片并搭建直流断路器试验平台,试验结果证明了该方案的可行性,控制器响应时间实测小于500μs,为直流断路器电流转移及开断提供了保障。  相似文献   

5.
受到高压直流断路器开断容量以及关断时间的限制,直流电网面临故障抑制与清除的难题。提出了一种具有限流能力的混合式高压直流断路器拓扑,通过在电流转移回路中引入限流装置,达到有效抑制故障电流目的。分析了该断路器的拓扑结构、工作原理,并给出了断路器关键参数的计算方法,最后,针对三端柔性直流输电系统应用,在PSCAD/EMTDC平台进行仿真验证。仿真结果表明相较于其他方案,该断路器在系统正常运行情况下的通态损耗小、动态特性好,出现故障时能够快速切除故障电流,满足多端柔性直流输电系统对故障电流的抑制要求。  相似文献   

6.
《高电压技术》2021,47(3):1083-1091
为解决机械式直流断路器不易实现快速重合闸、开断小电流不易判别方向等技术难题及混合式直流断路器成本较高的问题,该文提出了一种具备重合闸功能的经济型直流断路器拓扑。首先,结合该拓扑工作方式研究了电流基于电弧电压自然转移与基于电力电子器件强迫转移的原理;其次,根据实测参数建立系统模型,仿真了故障电流、负荷电流及小电流的开断过程,验证了不同电流的开断性能;最后,针对原理样机进行开断试验,验证了该方案的可行性。研究结果表明:该方案可实现40 ms内快速重合闸、3 ms内截断故障电流等功能,且减少了电子电子器件应用数量,为经济型直流开关设备的研究提供一种新的思路。  相似文献   

7.
电流转移是混合式直流断路器能够成功开断电流的前提,针对混合式直流断路器的电流转移特性展开了研究。首先通过试验测量具有不同触头结构及触头材料的真空电弧电压。试验结果表明电流为0~1 k A时,电弧电压约16~22 V;且改变触头结构、触头材料及触头开距等无法有效提高电弧电压,所以提高真空电弧电压以驱动电流转移的方法并不可行。为此,首次提出了一种应用换流驱动电路的电流转移方法。对换流驱动电路建立了数学模型,并通过试验验证了仿真模型。最后,针对基于换流驱动电路的混合式直流断路器,设计试验回路并进行了电流转移等效模拟试验。试验结果表明:该电流转移方法能够保证混合式直流断路器中电流在200μs时间内可靠转移。该试验结果验证了基于换流驱动电路的电流转移方法应用于混合式直流断路器的有效性。  相似文献   

8.
目前针对实验室内测试换流式直流断路器的开断性能,多采用工频的合成回路进行试验,其等价性有待商榷。文中提出采用叠加振荡电流源来模拟实际直流短路电流的方案。针对设计参数为额定电流2 kA,短路电流20 kA,最大电流上升率6 kA/ms的直流系统,分别计算了低频、高频电流源回路及电压源回路的相关参数,通过PSCAD搭建了整体的系统模型,分析了各模块间的动作时序,并成功进行了开断试验,对实际直流断路器及其测试平台的设计有一定的参考价值。  相似文献   

9.
《高压电器》2017,(6):167-172
随着直流电力技术的不断发展,直流断路器在高、低压直流电网中的重要性日益明显,直流断路器的试验技术与试验回路设计、实施也成为容量试验站研究的热点。文中分别讨论了中低压直流断路器、高压直流断路器的电流开断技术、开断要求,以及开断试验回路的设计、实施和试验技术。所设计的中低压直流断路器电流开断试验回路一期调试结果为额定电压2 kV、额定短路电流82.6 kA/峰值126.2 kA,完全满足1.8 kV/80 kA直流断路器的试验需求,此外根据设备参数理论上的试验容量可以满足额定参数4 kV/125 kA直流断路器的试验需求。进一步讨论了高压直流断路器电流开断的合成和直接试验回路,并给出了以直接试验回路进行试验时的典型试验结果。文中的研究内容为大容量试验站进行中低压和高压直流断路器电流开断试验回路设计和试验实施具有一定的参考价值。  相似文献   

10.
磁约束聚变装置的失超保护系统利用直流断路器快速切断超导磁体回路的电流,实现磁体能量的转移与释放,以保障磁体安全。随着超导磁体运行电流等级的不断提升,直流断路器的设计面临着巨大挑战。本文针对10 kV/100 kA的大容量失超保护系统设计,提出使用直流真空断路器作为开断电流的主保护开关,并详细分析了其开断换流过程。首先介绍了失超保护系统的拓扑结构和工作原理;然后具体分析了真空断路器在开断及换流阶段的数学方程,并依据开断可靠性理论,分别对换流回路、泄能回路与缓冲回路进行了计算和参数设计;最后开展了100 kA直流电流开断实验。研究结果表明,失超保护系统中使用真空断路器开断100 kA磁体电流具有理论和工程可行性,并通过实验验证了所设计的真空断路器样机能够有效开断100 kA电流,换流过程符合预期判断。本文的研究工作为大功率失超保护系统中的直流断路器设计提供了技术支撑。  相似文献   

11.
根据张北500 kV柔性输电工程及混合式直流断路器技术要求,分析了混合式直流断路器快速机械开关应用工况设计要求,并确定试验参数。提出了满足混合式高压直流断路器要求的快速机械开关动态耐压性能及满足系统工况要求特殊电流耐受试验原理的试验方法,设计了试验回路,分析了试验方法的可行性。该试验方法及回路设计对直流断路器的设计研发具有指导性。  相似文献   

12.
针对±160 kV南澳多端柔性直流工程对高压直流断路器的实际需求,提出了一种新型的机械式高压直流断路器拓扑,以及160 kV机械式高压直流断路器的技术方案,对其中的关键技术如快速操动机构、多断口串联均压等进行了仿真研究。研制出了160 kV超快速机械式高压直流断路器,提出了采用发电机源提供交流电流来模拟直流故障电流的开断试验电路,并进行了正、反向大电流开断试验。试验结果表明,机械式高压直流断路器成功开断了9.2 k A正向电流,暂态恢复电压峰值达到272 kV,开断时间3.9 ms;成功开断了9.2 kA反向电流,暂态恢复电压峰值达到262 kV,开断时间为4.6 ms。  相似文献   

13.
该文围绕±10 kV柔性直流系统中的自然换流型混合式直流断路器操作暂态特性进行分析并建模仿真。首先简要分析直流断路器拓扑结构,提出一种基于绝缘栅双极型晶体管的自然换流混合式断路器。随后设计了断路器的动态模型,并整定了动作时序。接着讨论了断路器参数变化和故障特性对断路器分断性能的影响,利用PSCAD/EMTDC仿真软件分析了极间短路故障时直流断路器的暂态特性。仿真结果表明,电流转移过程能否正常进行对断路器开断有很大的影响,转移回路的杂散电感与电流转移时间接近线性关系,金属氧化物压敏电阻吸收电流持续时间对断路器成功开断故障有很大影响。此外,该文还设计了电流转移实验验证研究结果的正确性。研究结果可用于指导直流配电系统和断路器设计和电磁暂态分析。  相似文献   

14.
为了实现直流输电网和配电网中,直流线路故障电流快速分断,提出一种新型混合式强迫换流直流断路器拓扑。该断路器通过在通流支路中设置强迫换流回路,可在几毫秒内完成故障电流的分断,同时可实现机械开关的零电流关断;此外,即使断路器中半导体器件门极电源突然意外失电,断路器依然可以维持电流通路,从而提高了断路器的可靠性。详细分析了所提混合式断路器的工作原理和参数设计原则,并通过仿真验证了断路器能够快速分断直流故障电流。  相似文献   

15.
为了降低混合式直流断路器在直流配电网中开断故障电流时所承受的应力,提出一种基于电阻型超导与绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)控制限流电阻相结合的桥型电路拓扑结构的混合超导限流器,并对影响混合式直流断路器开断暂态特性的因素进行分析研究。该种桥型超导限流器通过IGBT可分级控制接入电阻,弥补故障时超导失超阻值大小不可调节的缺点,通过超导限流器和混合式直流断路器的配合,在故障前期由超导限流器抑制故障电流上升率,并当故障电流上升到断路器动作电流时,则令混合式直流断路器动作从而切断故障支路。为了分析含超导限流器直流断路器的开断应力,建立了含有超导限流器与混合式直流断路器分断故障电流的暂态电网回路,并从理论上推导、分析加入超导限流器后,混合式直流断路器在开断故障电流时所承受的应力变化。最后通过在MATLAB/Simulink中搭建桥型超导限流器和混合式直流断路器的暂态回路模型,仿真验证所提超导限流器的有效性和实用性。  相似文献   

16.
通过对典型高压直流断路器在开断大大直流时开断能力不足的问题的分析,在其电路拓扑的基础之上,引进了一个电阻元件,将该电阻直接并联于直流回路上,用于分流和减小直流电流的幅值。另外,在与该电阻元件并联的直流回路上设置了一台断路器装置,该装置能开断较小容量的直流回路,它能与主直流回路的断路器共同工作,最终开断大幅值直流电流。在Matlab/Simulink环境下,建立Mayr电弧模型,并在此基础上建立了新型高压直流断路器模型。通过仿真及其分析,表明在高压直流系统中,该新型直流断路器具有很好的直流开断能力。  相似文献   

17.
多端柔性直流与直流电网为提升大规模可再生能源并网与消纳提供了灵活高效的解决途径,高压直流断路器可实现直流电网故障区域快速隔离,是构建直流电网的核心设备。混合式直流断路器兼顾传统机械式和固态式优点,低损与快速开断特征满足高压大容量直流系统需求。该文针对模块化混合式直流断路器拓扑,详细阐述了其构成、基本原理与技术特点,完成了设计参数数学解析。结合舟山五端直流和张北直流电网应用需求,开发200kV和500kV等级直流断路器,开展部件功能与整机型式试验。建立PSCAD仿真模型,分析直流断路器应用于舟山工程开断性能,实现了200kV直流断路器工程运行,完成系统故障电流和人工短路试验电流开断。试验和运行结果验证设计正确性及样机性能,为灵活可靠的多端及直流电网建设提供了技术支撑。  相似文献   

18.
直流断路器最重要、最基本的功能是能在短路故障的工况下及时分断短路电流。整机开断试验需要模拟实际工程中最严酷的短路电流开断工况以有效检验直流断路器开断能力。基于混合式直流断路器特性提出了一种等效开断试验装置拓扑结构,并对其拓扑结构组成、运行原理、关键组成部分的应力分析、电气参数计算方法、试验仿真开展研究,研究结果可作为试验装置平台开发和直流断路器开断试验相关工作开展的理论基础。  相似文献   

19.
《高压电器》2017,(3):119-125
混合式直流断路器的电流转移特性对其快速开断及控制策略有着重要意义,文中通过分析混合式直流断路器的工作原理,利用Mayr电弧模型、IGBT、RCD缓冲电路和避雷器模型等建立了混合式直流断路器仿真分析模型,分析了不同外电路参数和转移支路参数下的电流转移特性。搭建了直流微网模拟短路试验平台,进行了混合式直流断路器的开断特性试验,重点研究了电压400 V,不同故障电流(低于200 A)及不同参数下的电流转移特性。试验结果验证了仿真分析模型,为后期快速开断的直流微网混合式断路器提供了可参考的依据。  相似文献   

20.
正高压直流断路器利用电力电子器件开断直流回路,快速清除直流故障,对柔性直流输电系统的稳定、经济运行具有重要作用。桥式整流型混合式高压直流断路器由主通流支路、分断支路和耗能支路组成,利用IGBT分合控制,配合耗能组件实现大电流切除。2020年6月投运的张北柔性直流电网工程采用了世界上电压等级最高(±535 kV)、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号