共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用粉末活性炭为催化剂,构建粉末活性炭耦合陶瓷膜臭氧催化氧化反应器,并探讨其对煤气化废水的深度处理效能。结果表明,当粉末活性炭投加2 g/L、臭氧投加量为30 mg/L时,煤气化废水生化出水COD为125~143mg/L,去除率可达75%,ΔCOD/Δρ(O_3)可达1.3。在HRT为30 min、膜通量为50 L/(m~2·h)时,粉末活性炭-陶瓷膜臭氧催化氧化反应器出水COD可保持为50 mg/L左右。反应器中的臭氧可有效将临界通量从35~40 L/(m~2·h)提高至50~60/(m~2·h),跨膜压差降低35%~40%,使反应器膜装置稳定运行。粉末活性炭-陶瓷膜臭氧催化氧化技术,可为煤气化废水深度处理提供有效的技术方案。 相似文献
3.
4.
为了响应环保号召,保证煤化工废水近零排放,构建了粉末活性炭-陶瓷膜臭氧催化氧化反应器,介绍了试验装置与方法,探讨了反应器运行参数,并分析了反应器处理效果。结果显示,在进水COD为180mg·L-1,活性炭投加量为2.0g·L-1,水力停留时间为1h,臭氧投加量为120mg·L-1,膜通量为50LMH,出水COD降为58mg·L-1,符合煤化工废水排放标准中直接排放的限值(80mg·L-1);同时发现,臭氧浓度与跨膜压差负相关,增大臭氧浓度能降低跨膜压差,产生类似膜清洗的效果。 相似文献
5.
Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究 总被引:6,自引:0,他引:6
采用Fenton氧化-活性炭吸附协同处理工艺对抗生素制药废水二级生化出水进行了研究。探讨了温度、pH值、H2O2投加量、Fe2 投加量、反应时间,活性炭投加量及投加方式对COD去除率的影响。结果表明:在温度为30℃,pH值为5,H2O2(30%)投加量为300mg/L,FeSO4·7H2O投加量为80mg/L,反应时间为120min,活性炭投加量为50mg/L且与Fenton试剂同时加入时,COD去除率可达68.5%,处理出水达到了国家一级排放标准。 相似文献
6.
黄景星 《中国石油和化工标准与质量》2019,(7):140-141
针对煤化工废水处理状况,总结预处理技术。明确针对性的实验整合方针,旨在通过颗粒活性炭吸附法深度研究状况的分析,进行煤化工废水处理方案的构建,以便有效提升煤化工废水处理的质量。 相似文献
7.
8.
活性炭吸附-微波诱导氧化处理糠醛废水 总被引:3,自引:0,他引:3
研究了活性炭吸附-微波诱导氧化处理糠醛废水,分别考察了活性炭用量、微波辐射时间、微波功率、双氧水用量和pH等因素对糠醛废水处理效果的影响.结果表明,4g活性炭与50mL糠醛废水混合,在微波功率为480W、微波辐射时间3min、双氧水(体积分数6%)用量1.5mL、FesO4用量0.07 g和pH=3的条件下,糠醛废水COD去除率达到96.8%.单独活性炭吸附、单独微波辐射和活性炭吸附-微波诱导氧化3种不同工艺的对比试验表明,活性炭吸附-微波诱导氧化具有明显的优越性. 相似文献
9.
臭氧氧化法深度处理造纸废水试验研究 总被引:6,自引:0,他引:6
首先采用复合混凝剂对造纸废水二级出水进行了预处理,再用臭氧进行氧化处理.研究了在不同臭氧量、pH条件下,臭氧氧化法对造纸废水中COD和色度的去除效果,及不同臭氧产生速率和反应时间对COD与色度的去除效果,分析了臭氧氧化污染物的机理.结果表明,臭氧氧化效果随臭氧量、反应时间的增加而增强,但增强幅度越来越小;臭氧投加速率为13.98 mg/min、停留时间为30 min时,COD和色度去除率分别可达62-3%和99.5%,去除效果明显. 相似文献
10.
11.
《工业水处理》2021,41(8)
采用电催化氧化—活性炭处理焦化废水生化出水,研究电流密度、极板数量、间距、活性炭种类等因素对处理效果的影响。在生化出水COD为136.6 mg/L、TOC为56.6 mg/L条件下,当极板数量为2对、间距为1.8 cm、电流密度为20 mA/cm~2、反应6 h时,电催化出水COD去除率可达99.7%,TOC去除率为47.87%。相较于椰壳炭,比表面积大的煤质炭对电催化处理出水的吸附效果较好。当煤质炭投加量为20 g/L、反应120 min时,活性炭出水TOC总去除率可达67.88%。煤质炭吸附废水中有机物的过程更符合准二级动力学模型,颗粒内扩散模型反映该吸附是一个复杂过程。三维荧光光谱表征表明,电催化能氧化分解生化出水中部分类腐殖酸物质,活性炭可进一步吸附去除残留的类腐殖酸物质。 相似文献
12.
臭氧-活性炭工艺深度处理煤制气废水试验研究 总被引:4,自引:2,他引:4
以煤制气废水为研究对象,考察臭氧接触时间和臭氧通量对色度和UV254去除效果的影响,研究了臭氧-活性炭工艺在煤制气废水深度处理中的应用效果及影响因素。结果表明,与臭氧直接氧化相比,臭氧催化氧化对色度和UV254的去除效果显著提高,最佳臭氧接触时间为2 h,最佳臭氧通量为5 L/min,在此试验条件下连续运行该工艺深度处理煤化工废水,进水SS浓度和pH值对处理效果有较大影响,CODCr和色度去除率分别为89.95%和86.50%,出水CODCr的质量浓度小于30 mg/L,色度为30度,远优于GB 8978—1996《污水综合排放标准》中一级标准的要求,达到废水回用相关标准的要求。 相似文献
13.
为考察O_3氧化对煤化工废水中有机物的去除效果,采用O_3、 O_3/H_2O_2和O_3/H_2O_2/催化氧化3种工艺深度处理煤基合成油废水。在进水水质和O_3流量相同条件下,对COD和TOC去除效果依次为:O_3/H_2O_2/催化氧化工艺 O_3/H_2O_2氧化工艺单纯O_3氧化工艺。在优化试验中,当进水COD和TOC质量浓度分别为70.90和27.00mg/L, O_3气体流量为40 mL/min, H_2O_2投加量为30 mg/L,催化剂投加量为300 g/L,连续反应60 min的条件下,O_3、 O_3/H_2O_2、 O_3/H_2O_2/催化氧化3种工艺对COD和TOC的去除率分别为14.10%和23.13%、 46.12%和14.26%、26.85%和51.48%。O_3/H_2O_2/催化氧化工艺出水COD的质量浓度为38.20 mg/L,满足GB/T 19923—2005《城市污水再生利用工业用水水质》中冷却用水和锅炉补给水要求。 相似文献
14.
15.
以钢渣、粉煤灰、黏土、剩余活性污泥和过渡金属盐类为原料,利用固相混合法制备得到陶粒催化剂,并对焦化废水生化尾水进行臭氧催化深度处理研究。以COD去除率为评价指标,考察了催化剂活性组分种类与质量分数、催化剂质量浓度、臭氧投加量、焙烧温度及废水初始p H等工艺条件对COD去除率的影响。结果表明,Mn-Ti O2双活性组分质量分数为8%、焙烧温度为1 110℃、废水初始p H为7. 12、臭氧投加量为5. 81 mg/min、催化剂质量浓度为20 g/L时,陶粒催化剂对焦化废水的处理效果最佳。废水的COD从100. 08 mg/L降至44. 12 mg/L,去除率高达55. 92%。出水水质满足新修订的焦化废水排放标准。催化剂重复使用10次,活性无明显衰减,COD去除率均保持在50%以上。 相似文献
16.
17.
18.
19.
为推动活性炭-臭氧氧化法(AC-O3)在废水深度处理中的工程化应用,采用连续运行的方式考察了其对印染废水生化出水的处理效能。结果表明,投加适量的AC能提高反应器对O3的利用率和对溶解性有机物的去除能力,并有效降低水中剩余O3的含量。当反应器颗粒炭投加量为15 g/L、O3投加量为1.74 g/h、HRT为10 min时,AC-O3对生化出水DOC、UV254和ADMI的去除率分别为39.6%、81.5%和95.7%。长时间的AC-O3会消耗AC表面的碱性催化点位,生成含氧酸性基团,并削弱其对小分子有机物的吸附能力。通过参数优化,AC-O3的有效性和稳定性完全能满足废水深度处理的需要。 相似文献