首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邢艳  呼国茂  王燕  马向荣 《工业催化》2018,26(12):50-54
以FeSO_4·7H_2O为单一铁源,浓氨水为沉淀剂,柠檬酸钠为表面改性剂利用简单回流法快速合成Fe_3O_4磁性纳米粒子。考察反应时间,反应温度及浓氨水加入方式对合成Fe_3O_4磁性纳米粒子的影响,并利用动态光散射仪、傅立叶红外射线光谱仪及透射扫描电镜等对合成的Fe_3O_4磁性纳米粒子进行表征。结果表明,以柠檬酸钠为表面改性剂,逐滴加入浓氨水,反应温度为(70~80)℃和反应时间为6 min时,获得的Fe_3O_4磁性纳米粒子在水中具有良好的分散性及磁响应性。Zeta电位和红外光谱同时表明,柠檬酸钠成功地吸附于Fe_3O_4磁性纳米粒子的表面(Fe_3O_4@SC),且Zeta电位值为-31.3 mV;透射扫描电镜显示获得的Fe_3O_4@SC磁性纳米粒子呈球状结构,粒径约为10 nm。  相似文献   

2.
《应用化工》2022,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

3.
《应用化工》2016,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

4.
采用聚乙二醇(PEG)将合成的Fe_3O_4纳米粒子进行包覆制备了亲水性磁流体(Fe_3O_4@PEG),采用共沉淀法将Fe_3O_4@PEG与三聚氰胺脲醛树脂(MUFRs)预聚物作用制得磁性三聚氰胺脲醛树脂,并利用X射线衍射仪、傅里叶变换红外光谱仪、扫描电子显微镜等对磁性三聚氰胺脲醛树脂进行了表征。结果表明:合成的Fe_3O_4为纳米粒子;高分子包覆对Fe_3O_4的晶体结构和晶粒粒径没有明显影响;当Fe_3O_4@PEG与MUFRs的质量比为2∶1时,磁流体包覆完整,制得的磁性三聚氰胺脲醛树脂微球外观光滑,球形度好且粒径分布均匀。  相似文献   

5.
《辽宁化工》2021,50(7)
纳米Fe_3O_4因其独特的磁性能、良好的生物相容性以及在水处理、药物传递、生物分离检测等领域的潜在应用而被广泛研究。然而,磁性纳米Fe3O4极易聚集,且由于缺乏官能基团,难以与分子直接偶联,限制了磁性纳米材料的应用。为了克服这些缺点,通常在磁性纳米材料上包覆聚合物、金属或金属氧化物外壳,形成复合磁性纳米粒子。综述了纳米Fe_3O_4的制备方式、表面修饰以及Fe_3O_4基复合磁性纳米粒子在印染废水中的应用研究。  相似文献   

6.
《广东化工》2021,48(8)
以Fe_3O_4为核合成了具备光催化活性和磁性的Fe3O4@mTiO_2核壳结构复合材料,并研究其光催化性能。在Fe3O4纳米颗粒表面包覆TiO_2壳层,改变钛酸四丁酯(TBOT)用量调控TiO_2壳层厚度,结果显示,当TBOT用量为0.35 g时可获得具有最佳壳层厚度的Fe3O4@Ti O2核-壳材料。随后,利用水热法将无定型TiO_2转变为锐钛矿型TiO_2,获得了具有高比表面积和光催化活性Fe3O4@Ti O2核壳材料,并以亚甲基蓝作为模型分子评估其光催化性能。  相似文献   

7.
以硫酸亚铁铵[(NH_4)_2Fe(SO_4)_2·6H_2O]为铁源,氢氧化钠为沉淀剂,过硫酸铵[(NH_4)_2S_2O_8]为氧化剂,采用沉淀法制备了Fe_3O_4磁性纳米颗粒;采用石油醚萃取的方法从马铃薯皮中提取了糖苷生物碱;通过超声混合并研磨的方法将其与糖苷生物碱(SGAs)复合,制备了Fe_3O_4/SGAs复合材料,并对样品进行了X-射线粉末衍射(XRD)、红外吸收光谱(FT-IR)、透射电子显微镜(TEM)等表征。结果表明,所制备的Fe_3O_4纳米粒子具有尖晶石结构且Fe_3O_4与糖苷生物碱发生了有效复合。  相似文献   

8.
以FeCl_3·6H_2O和FeCl_2·4H_2O为铁源,以Na OH溶液为沉淀剂,选择共沉淀法制备Fe_3O_4∕石墨烯复合物。以Fe(2+)和Fe(2+)和Fe(3+)的浓度作为变量制得5种不同比例的Fe_3O_4/石墨烯纳米复合材料,然后将所得复合材料压制成电极片,组装成超级电容器后进行循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试,探究Fe_3O_4与石墨烯的含量比对复合材料电化学性能的影响。结果表明,当FeCl_3·4H_2O和FeCl_2·4H_2O用量分别为0.456 g和0.665 g,氧化石墨烯用量为150 mg时,所制备复合材料的电化学性能最佳,比电容可达510 F/g。  相似文献   

9.
催化湿式过氧化氢氧化是常见的一种降解水中有机物的方法,催化剂的加入能促使H_2O_2分解产生氧化能力更强且无选择性的羟基自由基,开发出性能优异的催化剂是该方法的关键所在。采用溶剂热法制备出磁性核壳型的Fe_3O_4@Ce O_2纳米催化剂,并采用N_2吸附-脱附、磁性测试和透射电子显微镜(TEM)对制备的Fe_3O_4@Ce O_2催化剂进行表征。考查Fe_3O_4及Fe_3O_4@Ce O_2分解H_2O_2的性能,结果表明,相比Fe_3O_4,Ce O_2包覆后的Fe_3O_4@Ce O_2分解的H_2O_2效率得到了提高。  相似文献   

10.
采用部分还原法制备Fe_3O_4磁性纳米颗粒(MNP),通过反相微乳液法在磁性Fe_3O_4纳米颗粒表面包覆SiO_2且其表面由叠氮(-N3)基团进行修饰,制备了一种新Fe_3O_4@SiO_2@N3复合材料。TEM和IR对材料形态结构及包覆情况的分析,显示SiO_2包覆在Fe_3O_4表面,形成尺寸约为50 nm,硅球结构清晰较为均匀,单分散性好的复合结构。其与3-叠氮丙基三乙氧基硅烷接枝叠氮基团,形成尺寸为70 nm左右的三层复合结构。该复合材料具有良好的分散性,可作为合成磁性纳米应用材料的中间体。  相似文献   

11.
采用共沉淀法制备了四氧化三铁纳米粒子(Fe_3O_4),并在Fe_3O_4纳米粒子表面修饰上了氨基。透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)显示,纳米粒子分散性良好,粒径约为10 nm,氨基成功修饰在了纳米粒子的表面。以胃癌SGC-7901为目的细胞,依据RGR值考察了Fe_3O_4-NH_2纳米粒子的细胞毒性等级,结果显示,在一定浓度范围内,细胞死亡率与Fe_3O_4-NH_2纳米粒子的浓度成正相关,低于51.2μg/m L时,Fe_3O_4-NH_2纳米粒子的细胞毒性相对较小,Fe_3O_4-NH_2纳米颗粒具有较好的生物相容性。  相似文献   

12.
本文通过水热法合成了Fe_3O_4磁性纳米颗粒,采用3-氨丙基三甲氧基硅烷(APTMS)对Fe_3O_4颗粒进行表面修饰,得到氨基化磁性微粒,并表征其性能。并用氨基化Fe_3O_4磁性纳米粒子构建铜离子吸附体系。实验结果表明,Fe_3O_4纳米粒子和功能化Fe_3O_4纳米粒子的磁饱和强度值(M)分别为78和59emu·g~(-1)。最终确定的最优工艺组合为:APTMS@Fe_3O_4添加量2mL,温度30℃,吸附时间15min。  相似文献   

13.
《应用化工》2019,(10):2324-2327
合成氧化石墨烯磁性纳米复合材料Fe_3O_4-NH_2@GO,通过透射电镜(TEM)、傅里叶变换红外光谱(FTIR)对材料的形貌、结构进行表征,并考察影响该磁性材料对水样中大红染料吸附过程的主要参数,包括吸附剂用量,pH,吸附时间及温度。结果表明,吸附剂Fe_3O_4-NH_2@GO对大红染料有较好的吸附性能,最佳吸附pH为4,吸附平衡时间为8 h,理论最大吸附量69.44 mg/g,升高温度,可提高Fe_3O_4-NH_2@GO对大红染料的吸附能力。动力学研究结果证明,该吸附过程符合准二级动力学模型,吸附等温线满足Langmuir模型。  相似文献   

14.
《应用化工》2022,(10):2324-2327
合成氧化石墨烯磁性纳米复合材料Fe_3O_4-NH_2@GO,通过透射电镜(TEM)、傅里叶变换红外光谱(FTIR)对材料的形貌、结构进行表征,并考察影响该磁性材料对水样中大红染料吸附过程的主要参数,包括吸附剂用量,pH,吸附时间及温度。结果表明,吸附剂Fe_3O_4-NH_2@GO对大红染料有较好的吸附性能,最佳吸附pH为4,吸附平衡时间为8 h,理论最大吸附量69.44 mg/g,升高温度,可提高Fe_3O_4-NH_2@GO对大红染料的吸附能力。动力学研究结果证明,该吸附过程符合准二级动力学模型,吸附等温线满足Langmuir模型。  相似文献   

15.
以FeCl_3·6H_2O、乙酸钠、Zn(NO_3)_2·6H_2O、2-甲基咪唑为主要原料,通过水热法合成磁性金属有机骨架材料(Fe_3O_4@ZIF-8),对其进行了FTIR、VSM、SEM、TEM和EDS表征。以材料作为药物载体负载四环素,以负载量作为主要评价指标,考察了振荡时间、Fe_3O_4@ZIF-8用量、四环素溶液pH、四环素初始质量浓度对四环素负载量的影响。结果显示:在涡旋振荡90 s、pH=9、Fe_3O_4@ZIF-8用量5 mg、四环素质量浓度30 mg/L条件下,四环素饱和负载量达到12.296 mg/g。重复利用实验结果表明,Fe_3O_4@ZIF-8材料至少可以重复利用6次。  相似文献   

16.
以酚醛树脂为炭前驱体、水热法合成的Fe_3O_4纳米微球为核,经研磨、干燥、炭化制备Fe_3O_4@C纳米核壳型微球。结果表明,包覆后的Fe_3O_4@C微球尺寸均匀且无团聚现象。碳包覆量影响着Fe_3O_4@C锂电池负极材料的电化学性能。20%为最佳包覆量,其首次放电比容量为984 mA·h/g,100次循环后放电比容量保持在413 mA·h/g。  相似文献   

17.
本研究以氯化铁、柠檬酸钠及醋酸钠为原料,乙二醇为溶剂通过溶剂热的方法合成了直径为200-300纳米的四氧化三铁(Fe_3O_4)纳米球。然后通过单体吡咯低温下的聚合,使聚吡咯均匀分布在Fe_3O_4球体表面,最后经过碳化得到含氮碳包覆的Fe_3O_4纳米球。分别对Fe_3O_4纳米球与包覆碳层后的Fe_3O_4纳米球进行电化学性能测试。结果表明:包覆碳层之后的Fe_3O_4球表现出更稳定的循环性能,在100 mA g~(-1)的电流密度条件下,经过85圈的循环能够保持513mAh g~(-1)的比容量,从第二圈起每圈衰减平均为0.17%,比没有包覆的Fe_3O_4稳定性大大提高。  相似文献   

18.
综述了β-K_3H_3[SiW_(11)Mn(H_2O)O_(39)]·13H_2O、[Fe(C_5H_5)_2]_3K_3[SiMo_(11)O_(39)M(H_2O)]、纳米H_3PW_12O_(40)/SiO_2·9H_2O复合型杂多酸、H_3PW_(12)O_(40)/ZrO_2-WO_3、硅烷化改性凹凸棒石负载磷钨钼杂多酸、TiSiW_(12)O_(14)/TiO_2,固体超强酸S_2O_8~(2-)/ZrO_2、SO_4~(2-)/TiO_2-Al_2O_3、AlCl_3·CuSO_4,无机化合物硫酸铈铵、硫酸钛、氧化亚锡、磺化硅胶、含磺酸基的介孔分子筛d-SBA-15-SO_3H、非晶态氧化亚锡基硼磷铝酸盐以及有机酸PTSA、对甲苯磺酸催化剂催化合成乙酸正戊酯的实验结果。  相似文献   

19.
纯粹的磁性Fe_3O_4纳米粒子易发生不可逆的硬团聚且易被空气氧化或者被酸腐蚀而破坏,硅壳包覆可以保护Fe_3O_4不被酸蚀,但壳层太厚会影响其磁性。本文针对采用油包水的微乳液法将磁性Fe_3O_4纳米粒子的表面包覆上不同厚度的硅壳,制备出一系列不同壳层厚度的硅壳磁性Fe_3O_4纳米粒子,并设计实验测试其磁性和对酸稳定性。结果表明,所制备的不同厚度硅壳磁性纳米粒子在水中都具有良好的分散性,但随着壳层厚度的变化,其磁性和对酸的稳定性有所变化。综合比较,在正己醇、表面活性剂曲拉通(Triton X-100)和环己烷为1:1:4的体积比时加入Fe_3O_4含量为6.2%的磁流体所制备的硅壳磁性Fe_3O_4纳米粒子为最优。  相似文献   

20.
以FeCl_3·6H_2O、乙二醇、醋酸钠、聚乙二醇等为主要原料首先通过溶剂热法在200℃反应生成平均粒径为26.6 nm的Fe_3O_4纳米颗粒。然后加入浓氨水催化正硅酸乙酯(TEOS)水解、缩合生成Fe_3O_4@SiO_2核壳结构纳米颗粒。通过对比纯Fe_3O_4纳米颗粒的粒径及核壳结构Fe_3O_4@SiO_2纳米颗粒的粒径,可计算得到SiO_2壳层平均厚度约为273.5 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号