首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
采用Fe_3O_4/Na_2S_2O_8体系催化氧化处理垃圾渗滤液生化尾水,研究了Na_2S_2O_8与Fe_3O_4投加量、pH、反应时间等因素对处理效果的影响。结果表明,在pH=3,m(S_2O_8~(2-))∶12m(COD)=1.2,Fe_3O_4投加量为1.5 g/L,反应时间为24 h的条件下,COD与色度去除率分别为63%和100%。FTIR分析结果表明,Fe_3O_4/Na_2S_2O_8体系的小分子有机物含量比未处理水样小分子有机物含量有所降低。  相似文献   

2.
采用零价铁(ZVI)活化Na_2S_2O_8-NaClO体系处理垃圾渗滤液生化尾水,考察了pH、催化剂nZVI投加量、氧化剂Na_2S_2O_8投加量、氧化剂NaClO投加量等因素对氧化效果的影响,并利用傅里叶光谱、三维荧光光谱分析技术对水样前后进行分析。结果表明,nZVI活化Na_2S_2O_8-NaClO体系能够有效的去除垃圾渗滤液生化尾水中目标污染物,当催化剂nZVI投加量为0.6g/L、Na_2S_2O_8投加量为2.5g/L、NaClO投加量为30mL/L(有效氯的质量分数10%)、水样初始pH为6时,COD和NH_4~+-N的去除率分别为85%和90%。垃圾渗滤液生化尾水经过nZVI活化Na_2S_2O_8-NaClO体系处理后污染程度显著降低,大量腐殖酸类物质被自由基降解。  相似文献   

3.
利用热活化Na_2S_2O_8体系产生的SO_4~-·处理渗滤液生化尾水,考察了氧化剂投加量、p H、反应温度、反应时间等因素对处理效果的影响。实验结果表明,该方法能有效地去除渗滤液生化尾水中的污染物质,在p H=4,反应时间t=12 h,反应温度T=60℃,Na_2S_2O_8质量浓度为4 g/L的条件下,COD与色度的去除率分别为63%与100%。紫外光谱分析表明:废水水样经热活化体系处理后,大量的大分子腐殖质类物质被降解为小分子的富里酸,有机污染程度下降。  相似文献   

4.
采用Fenton试剂法对环氧树脂生产废水进行处理。考察了pH值、反应时间、FeSO_4·7H_2O及H_2O_2投加量对废水COD_(Cr)去除效果的影响,研究了反应出水pH值与COD_(Cr)去除率之间的关系。通过试验确定了Fenton试剂法处理环氧树脂生产废水的最佳反应条件:pH值为3,反应时间为75 min,FeSO_4·7H_2O投加量为21.6 mmol/L,H_2O_2投加量为0.495 mol/L。在此条件下,废水COD_(Cr)去除率为59.9%,m(BOD_5)/m(COD_(Cr))从0.14提高到0.37,环氧树脂生产废水的可生化性大大提高;试验结果还表明,环氧树脂生产废水出水pH值与COD_(Cr)去除率具有一定联系。  相似文献   

5.
采用O_3/Na_2S_2O_8耦合体系预处理制药废水,研究了O_3通气量、Na_2S_2O_8投加量、pH、反应时间等因素对COD和色度去除率的影响。结果表明,COD和色度的去除率随着Na_2S_2O_8投加量、O_3通气量、反应时间的增加而增大,在碱性条件下更有利于废水中污染物的去除。在O_3通气量为1.2 g/(h·L)、Na_2S_2O_8投加质量浓度为8 g/L、pH=8.6、反应时间为150 min的条件下,制药废水的COD、色度的去除率分别达到68.3%、97%,B/C由0.12提高到0.38。  相似文献   

6.
采用混凝-Fenton法处理盘锦油田含油废水,分析PAC用量、PAM用量、pH值、H_2O_2的投加量、FeSO_4·7H2O的投加量、反应温度和反应时间等各因素对COD_(Cr)去除效果的影响,并确定最佳的处理条件。结果表明,混凝试验中PAC的投加量为200 mg/L和PAM的投加量为0.6 mg/L时效果最好;Fenton反应的最佳条件为:pH值为4,H_2O_2投加量为37.8 mmol/L,FeSO_4·7H_2O投加量为3.78 mmol/L,反应温度为75℃,时间为30 min,此时Fenton反应进行最彻底,含油废水COD_(Cr)去除率最高。  相似文献   

7.
采用Fenton氧化对垃圾渗滤液进行预处理研究。结果表明:COD_(Cr)的去除率随H_2O_2投加量的提高,先升高后下降;随FeSO_4投加量的提高,先升高后趋于平缓;随反应时间的延长,趋于平缓;随pH值的升高,先升高后下降。TN的去除率与投药的比例和反应条件关系不大,主要是氨氮的去除,始终保持在17%~30%。在COD_(Cr)质量浓度为2 500~3 000 mg/L、总氮质量浓度为950~1 400 mg/L时,最佳H_2O_2投加量为6 mL/L,FeSO_4投加量为2.5 g/L,最佳反应时间为30 min,反应pH值为4,COD_(Cr)去除率可达69.53%,总氮去除率可达22%,色度去除率可达98.33%,B/C由0.15提高至0.23。Fenton氧化作为垃圾渗滤液的预处理具有较高可行性的。  相似文献   

8.
研究了高铁酸钾(K2Fe O4)与双氧水(H_2O_2)联用处理高浓度环丙沙星废水的效果,考察了K2Fe O4的投加量、H_2O_2和K2Fe O4摩尔比、氧化反应时间和p H值对环丙沙星去除率的影响。K2Fe O4与H_2O_2联用处理高浓度环丙沙星废水存在明显的协同作用,当初始环丙沙星质量浓度为25 mg/L,p H为7左右,氧化反应时间为45 min,H_2O_2与K2Fe O4投加量摩尔比为4∶1时,环丙沙星去除率高达85%以上,与单独使用K2Fe O4相比,去除率提高约12%。  相似文献   

9.
采用UV/TiO_2反应体系对鲁奇废水生化出水进行了光催化氧化试验,考察了pH、TiO_2投加量、反应时间和外加H_2O_2对COD_(Cr)去除率的影响。结果表明:中性及酸性条件下更有利于UV/TiO_2光催化降解鲁奇废水生化出水中的COD_(Cr);在pH值=7和1.0 g/L TiO_2投加量条件下,反应4 h后,COD_(Cr)去除率为61.17%。UV/TiO_2反应体系外加一定量H_2O_2是否会提高其COD_(Cr)去除率与具体的反应体系有关。  相似文献   

10.
为了考察Fe2+/Na_2S_2_O8/H_2O_2氧化体系对实际印染废水的处理效果,首先试验确定Fe2+/H_2O_2和Fe2+/Na_2S_2O_8氧化体系的最佳药剂投加量以及Fe2+/Na2S2O8/H2O2氧化体系的最佳p H,基于最佳p H条件下以药剂投加量为自变量,废水COD去除率为响应值,通过Box-Behnken设计方法设计试验,利用响应曲面分析优化,以优化结果为基础,改变氧化体系中药剂的投加时间与顺序,得出Fe2+/Na2S2O8/H_2O_2氧化体系最优工艺参数,经过90 min反应后,出水COD达到纺织染整行业废水排放限值。  相似文献   

11.
本文考察了FeOOH催化H_2O_2/O_3氧化处理化工废水生化尾水的效果,结果表明:γ-FeOOH/H_2O_2/O_3构成的多元催化氧化体系,比γ-FeOOH/O_3及O_3氧化体系效率更高。FeOOH提高了H_2O_2/O_3氧化TOC的能力,促进了反应过程中·OH的产生。在γ-FeOOH投加量为0.5 g/L,H_2O_2投加量为50 mg/L,O_3投加量为5 mg/min,反应60 min后,TOC去除率达50%以上。  相似文献   

12.
采用微波诱导活性炭负载铁铜(Fe_3O_4-CuO-AC)催化H_2O_2、Na_2S_2O_8处理二乙基次膦酸铝(AlPi)废水,探究了两种体系下pH、催化剂投加量、氧化剂投加量、温度等因素对废水中总磷去除率的影响,对比了双氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8+H_2O_2)与两种单一氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8、MW/Fe_3O_4-CuO-AC/H_2O_2)对AlPi的氧化效果。结果表明,双氧化体系对AlPi模拟废水和工业废水中总磷的去除率可分别达到85.47%、71.43%,显著高于单一氧化体系。  相似文献   

13.
选用工业废弃的铁刨花作为ZVI供体,采用ZVI-H_2O_2法与ZVI-Na_2S_2O_8法对含有二甲基亚砜(DMSO的实际碳纤维生产废水进行处理。结果表明:在ZVI-H_2O_2体系中,对DMSO起主要降解作用的为·OH;当H_2O_2浓度为0.15 mol/L,铁刨花投量为100 g/L,初始pH=3时,DMSO去除率达79.0%。在ZVI-Na_2S2O_8体系中,SO_4~(·-)与·OH均对DMSO的去除起作用;当Na_2S_2O_8浓度为0.15 mol/L,铁刨花投量为50 g/L,初始pH=5时,DMSO去除率为49.3%。SEM表征结果显示,反应过程中铁刨花表面受到腐蚀,促进了反应进行,反应后铁泥为纳米级颗粒。  相似文献   

14.
采用磁性活性炭(Cu Fe2O4/AC,MACC)活化S_2O_8~(2-)深度处理焦化废水生化出水,考察了m(Cu Fe2O4)∶m(AC)、MACC投加量、K_2S_2O_8初始质量浓度以及溶液pH对焦化废水生化出水中TOC和色度去除效果的影响,并采用响应面法中的CCD实验设计对反应条件进行优化。结果表明:最佳反应条件为1.5-MACC投加量为5 g/L,K_2S_2O_8初始质量浓度为6 g/L和初始pH为8.3,在此条件下反应360 min后,TOC、色度去除率分别为85.4%、95.2%。响应面分析结果表明,最佳条件下的TOC去除率与模型预测值接近。  相似文献   

15.
以实际印染废水排放口的出水为研究对象,考察了微波辅助Fenton试剂氧化法深度处理印染废水的效果和影响因素。结果表明,微波辅助Fenton试剂氧化法对印染废水具有良好的深度处理效果,在进水COD_(Cr)为150~160 mg/L的条件下,处理出水COD_(Cr)小于60 mg/L,达到《污水综合排放标准》(GB 8978-1996)的一级标准。在试验条件下,最佳的反应参数为:初始pH为2.5,FeSO_4·7H_2O投加量为4.4 g/L,30%H_2O_2投加量为8 g/L,微波功率为500 W,微波反应时间为5 min。微波辅助Fenton试剂氧化法的COD_(Cr)去除率可达65.1%。  相似文献   

16.
采用Na_2S-Al_2(SO_4)_3-PAM体系直接处理氨羧配位剂电镀镉废水,并考察了废水初始pH值、Na_2S的投加量、Al_2(SO_4)_3·18H_2O的投加量及反应时间对处理效果的影响。结果表明:废水初始pH值为7、Na_2S的投加量为5mL/L,在常温下搅拌反应20min;再投加絮凝剂Al_2(SO_4)_3·18H_2O 8mL/L及PAM 3mL/L,继续搅拌反应5min后静置15min。上清液中残余Cd~(2+)的质量浓度为0.03mg/L,达到《电镀污染物排放标准》(GB 21900—2008)中规定的不大于0.05mg/L的要求,同时Cd~(2+)的去除率达到99.9%。  相似文献   

17.
《应用化工》2022,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+)浓度高这一水质特色,先用Fe(6+)浓度高这一水质特色,先用Fe(2+)还原Cr(2+)还原Cr(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(2+)、Fe(2+)、Fe(3+)、Cr(3+)、Cr(3+)、Cr(3+)、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、COD和总铬的同步去除。  相似文献   

18.
Fenton法处理DDNP废水的实验研究   总被引:2,自引:0,他引:2  
采用Fenton法处理DDNP废水,考察H_2O_2与FeSO_4的体积比、试剂总投加量、pH、反应时间等因素对去除效果的影响.实验结果表明,pH为6,质量分数为30%的H_2O_2投加量为40 mL/L左右、Fe~(2+)投加质量浓度为4.56 g/L,振荡1.5 h,COD_(Cr)去除率可达94.78%,色度去除率可达94.38%.  相似文献   

19.
O_3-H_2O_2与活性炭负载TiO_2预处理晚期垃圾渗滤液   总被引:1,自引:0,他引:1  
采用O_3-H_2O_2高级氧化结合催化O_3氧化技术对晚期垃圾渗滤液进行预处理,考察了颗粒活性炭负载二氧化钛(TiO_2/GAC)催化剂的催化效果,并研究了反应体系中O_3和H_2O_2投加量以及pH等因素对COD去除效果的影响.结果表明,当O_3投加量为1.8 g·L~(-1),H_2O_2投加量为0.27 g·L~(-1),催化剂投加质量分数为15%时,反应90min的COD去除率达到40%;对出水调节pH≥11.4,经过沉淀后,COD去除率提高到58%.出水澄清透明,BOD5/COD从<0.1提高到0.26.水质得到较大改善,可生化性明显提高,为后续的生化处理工艺起到较好的预处理作用.  相似文献   

20.
采用湿式催化氧化法对垃圾渗滤液进行处理,制备了活性炭载铜、铁系列催化剂,以O_3/H_2O_2为氧化剂, COD去除率为考察指标,考察了反应工艺条件对垃圾渗滤液的处理效果。结果表明:在焙烧温度为600℃,Cu、 Fe物质的量比为3∶1时,制得的Cu-Fe/AC复合催化剂的催化剂活性相对较好;当水样体积为20 m L, H_2O_2投加量为0.5 mL, O_3通入时间为25 min(O3流量为5 g/h),催化剂投加量为1 g时, pH值在2~4和10~12时的COD去除率较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号