首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用原位聚合添加反应型无卤阻燃剂,是实现聚己内酰胺(PA6)阻燃改性的主要方法。在己内酰胺的水解开环聚合体系中,加入三聚氰胺氰尿酸盐(MCA)的原料单体,原位聚合制备了阻燃PA6(FRPA6),对FRPA6的结构、形貌及性能进行了表征;通过熔融纺丝制备了FRPA6纤维,测试了其力学性能及阻燃性能。结果表明:FRPA6中阻燃剂MCA与PA6基体的相容性良好,MCA自组装反应比较充分,MCA粒子以纳米级均匀分布于PA6基体中;随着MCA含量的增加,FRPA6的熔点、熔融热焓有所降低,结晶温度略有升高,热稳定性下降;当MCA质量分数为7.5%时,FRPA6的阻燃性能达UL94 V-0级,拉伸强度为64.1 MPa,缺口冲击强度为10.4 k J/m2;相比纯PA6纤维,FRPA6纤维具有较好的阻燃性能,极限氧指数达35%以上,但力学性能有所下降。  相似文献   

2.
以三聚氰胺氰尿酸盐(MCA)与硫化锌(ZnS)或类石墨相氮化碳(g-C_3N_4)或9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物(ZDOPO)复配体系为阻燃剂,与聚己内酰胺(PA 6)切片共混、造粒、干燥、纺丝,制备阻燃PA 6纤维;通过常规升温热失重分析以及模拟纺丝过程恒温热失重分析,研究阻燃剂种类及含量对PA 6共混体系热稳定性的影响。结果表明:在阻燃剂总质量分数为6.0%条件下,添加MCA/ZDOPO复配体系对PA 6共混体系的热稳定性影响最小,制备的阻燃PA 6纤维具有良好的力学性能和阻燃性能;添加MCA质量分数3.0%、ZDOPO质量分数3.0%,PA 6/MCA/ZDOPO共混体系热失重5%时的热分解温度为393.8℃,热失重10%时的热分解温度为412.6℃,与纯PA 6的热学性能非常接近,制备的阻燃PA 6纤维的断裂强度为1.9 cN/dtex,断裂伸长率为75.8%,极限氧指数可达29.0%。  相似文献   

3.
以水为反应介质、无水乙醇为溶剂,将正硅酸四乙酯(TEOS)制备成二氧化硅(SiO_2)溶胶,利用溶胶的网络结构对三聚氰胺氰尿酸盐(MCA)进行表面包覆,制备出包覆型MCA阻燃剂;通过熔融共混方式,将包覆前后MCA与聚己内酰胺(PA 6)切片混合制备成不同阻燃剂含量的阻燃PA 6复合材料;采用红外光谱仪X射线光电子能谱仪、差示扫描量热仪、热重分析仪、垂直燃烧法和极限氧指数法等研究了阻燃PA 6复合材料的结构、热性能及阻燃性能。结果表明:SiO_2溶胶成功接枝在MCA表面,且主要分子结构没有发生改变;随着阻燃剂含量的增加,PA 6复合材料的熔点均有降低,但下降幅度较小;包覆型MCA在材料燃烧过程中能够有效参与成炭,在材料表面形成致密的保护层,增强PA 6复合材料的凝聚相阻燃效果,提高其阻燃性能;随着阻燃剂含量增加,PA 6复合材料的阻燃性逐步提高,添加包覆型MCA质量分数为8%时,PA 6复合材料阻燃性可达到UL-94 V-0等级,极限氧指数为28%。  相似文献   

4.
分别以三聚氰胺氰尿酸盐(MCA)和氢氧化镁(MH)为阻燃剂制备了聚酰胺6(PA-6)阻燃复合材料,研究和对比了MCA和MH对复合材料的阻燃性能、力学性能影响.结果表明,当MCA和MH用量同为20份时,PA-6/MCA复合材料的极限氧指数(LOI)达到30.5%,而PA-6/MH复合材料的LOI仅为23.5%,说明MCA的阻燃效率比MH高.同时,PA-6/MCA复合材料的拉伸强度为66.8 MPa,是PA-6/MH复合材料的1.14倍.熔体流动速率PA6/MCA复合材料熔体流动速率达74 g/10min,是PA-6/MH复合材料的4.9倍.  相似文献   

5.
研究了不同种类的无机填料(硅灰石、碳酸钙)对尼龙6(PA6)/三聚氰胺氰尿酸盐(MCA)阻燃复合材料性能的影响。阻燃性能测试结果表明,PA6/MCA/硅灰石阻燃复合材料为UL94 V–0级,比PA6/MCA阻燃复合材料(V–2级)有显著提高;然而PA6/MCA/碳酸钙阻燃复合材料的极限氧指数却有所下降。扫描电子显微镜测试分析表明,PA6/MCA/硅灰石阻燃复合材料燃烧后的表面炭层呈连续、致密状;PA6/MCA/碳酸钙阻燃复合材料的表面炭层有很多孔洞,且孔洞直径大。傅立叶变换红外光谱测试结果表明,PA6/MCA/硅灰石阻燃复合材料的表面炭层与Si O2能很好地结合,形成致密的保护层,致使其阻燃性能显著提高。另外,力学性能测试结果表明,硅灰石能够提高PA6/MCA阻燃复合材料的拉伸强度,但降低了缺口冲击强度,而碳酸钙的加入却使得PA6/MCA阻燃复合材料的综合力学性能有所下降。  相似文献   

6.
将磷系阻燃剂10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)与纳米石墨片(GNPs)复配加入到聚酰胺6(PA 6)聚合体系中,通过原位聚合的方式制备了PA 6/ODOPB/GNPs复合材料,再经熔融纺丝得到PA 6/ODOPB/GNPs复合纤维,并对复合材料及纤维的阻燃性能进行了研究。结果表明:ODOPB的加入导致复合材料的相对黏度下降,GNPs的添加对复合材料的相对黏度无明显影响;ODOPB与GNPs的复配协同作用提升了复合材料及纤维的阻燃抗熔滴性能,表现为凝聚相阻燃作用,ODOPB对PA 6具有优异的阻燃效果,GNPs具有优异的抗熔滴和抑烟效果;当添加ODOPB质量分数为5%、GNPs质量分数为2%时,复合材料的极限氧指数(LOI)可达31.8%,垂直燃烧达到V-0等级,复合纤维的LOI达29.8%;加入ODOPB及GNPs均会导致复合纤维的力学性能下降,当ODOPB质量分数为5%、GNPs质量分数为2%时,所得复合纤维的断裂强度从纯PA 6纤维的3.3 cN/dtex下降至1.5 cN/dtex。  相似文献   

7.
以聚酰胺(PA) 6为基体材料,添加二乙基次膦酸铝(ADP)、三聚氰胺氰尿酸盐(MCA)为阻燃剂,通过熔融共混制备无卤阻燃PA6复合材料。采用水平垂直燃烧仪、氧指数测定仪、万能材料试验机以及热重分析仪研究了ADP和MCA用量对无卤阻燃PA6阻燃性能、力学性能、热降解行为的影响,并采用扫描电子显微镜观察了燃烧后炭层的形貌,探讨了ADP与MCA间的协效阻燃作用。结果表明,制备的阻燃PA6复合材料均能达到UL94 V–0阻燃级别;当ADP添加量为18%时,极限氧指数(LOI)可达33.3%;当添加14% ADP时,ADP/MCA复配阻燃体系的LOI值保持在31%以上;MCA对ADP产生协效阻燃作用,MCA的加入使得热分解温度降低,加速了PA6在燃烧时的成炭,改善了炭层结构,并使PA6具有较好的力学性能。  相似文献   

8.
本实验选用一种新的方法合成改性三聚氰胺氰尿酸盐(MCA),将三聚氰胺(MA)、氰尿酸(CA)和极少量水混合成膏状物并使其在室温下反应一定时间,再加入少量MCA和二氧化硅(Si O2)溶胶使其继续反应以制备改性MCA(mMCA)阻燃剂。将制备的mMCA与尼龙6(PA6)熔融共混制备阻燃PA6复合材料。用FTIR、XRD和TG对所制mMCA进行了表征,对阻燃PA6复合材料的阻燃性能和力学性能进行了测试。结果表明:所制mMCA的FTIR、XRD特征峰与MCA的特征峰一致;m MCA的最大热失重温度有了较大的提升达到465.2℃。在PA6复合材料中,当阻燃剂含量为13%时,阻燃PA6复合材料的极限氧指数(LOI)达到33%,阻燃性能为UL-94 V0级,锥形量热测试的PHRR降低了26.3%。随着阻燃剂含量的增加,复合材料的力学性能有所提高。与传统大量水体系制备mMCA方法相比,此法具有工艺简单、不需加热、耗水量极低,没有污水排放等优点。  相似文献   

9.
李杰  刘渊  王琪 《塑料工业》2006,34(12):16-18
采用三聚氰胺氰尿酸盐(MCA)/聚氨酯(TPU)复合阻燃剂阻燃PA66,解决了单独使用MCA阻燃PA66熔滴引燃脱脂棉问题,可使1.6 mm样条通过UL94V-0级别;研究了MCA/TPU复合阻燃剂阻燃PA66的阻燃机理,考察了阻燃材料的力学性能。  相似文献   

10.
采用红磷对三聚氰胺氰尿酸盐(MCA)进行改性,作为尼龙(PA)6的阻燃剂,研究不同红磷含量改性MCA的结构及阻燃PA6体系的阻燃性能。结果表明,红磷通过干扰三聚氰胺和氰尿酸大平面氢键网络的形成,实现MCA细化。红磷能促进MCA成炭,改性MCA从气相和凝聚相协同阻燃,提高了PA6的阻燃性能。当改性MCA中红磷含量为20%、改性MCA用量为10%时,PA6的阻燃效果最好。  相似文献   

11.
王方明  管福成  冯钠  徐静 《塑料工业》2013,41(4):96-98,112
以三聚氰胺氰尿酸盐(MCA)为阻燃剂,制备了聚酰胺6(PA6)阻燃复合材料,采用氧指数、垂直燃烧和热失重(TG)重点研究分析了MCA对PA6复合材料的阻燃性能的影响,同时,考察了MCA对PA6复合体系力学性能和吸水性能的影响。结果表明,当MCA用量为10份时,PA6复合材料的氧指数达到28%,符合难燃材料的要求;TG分析表明,MCA的加入,使复合体系最大分解速率温度升高44℃,提高了PA6的热稳定性,但MCA的促炭能力不强;MCA的加入,复合材料拉伸强度随MCA的加入先增加后降低,而冲击强度逐渐降低;MCA的加入也降低了复合材料的吸水率。  相似文献   

12.
《塑料科技》2016,(7):42-46
将次磷酸铝(AHP)和环氧硅树脂(ESR)复配后添加到聚酰胺6(PA6)中制备了阻燃PA6材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了该阻燃PA6材料的阻燃性能,利用扫描电子显微镜(SEM)观察了阻燃PA6的残炭形貌,同时还通过拉伸、弯曲和冲击强度测试考察了阻燃PA6的力学性能。结果表明:当AHP用量为24%时,阻燃PA6材料通过了UL 94V-0测试,其LOI值达到25.6%;而以质量比为95:5的复配阻燃剂AHP/ESR对PA6进行阻燃,且阻燃剂用量仅为18%时,阻燃PA6材料通过UL 94V-0测试,其LOI值达到25.8%,这说明AHP与ESR对PA6具有良好的协效阻燃作用。与PA6/AHP复合材料相比,PA6/AHP/ESR复合材料的力学性能有所改善,这说明ESR的加入可提高材料的力学性能。此外,SEM测试结果显示,ESR的加入有助于阻燃PA6材料形成均一、致密的炭层,对下层的材料起到了很好的保护作用,从而提高了材料的阻燃性能。  相似文献   

13.
吴方娟  方辉  吕婉真 《中国塑料》2016,30(11):53-56
研究了阻燃剂三聚氰胺氰尿酸盐(MCA)/氧化锑(Sb2O3)和石墨烯(GP)对玻璃纤维(GF)增强聚酰胺6(PA6)复合材料性能的影响。结果表明,MCA/Sb2O3(质量比为70/30)的加入改善了PA6和GF的相容性,与不添加阻燃剂的PA6/GF相比,当MCA/Sb2O3含量为30份时,复合材料的强度、刚性和阻燃性能显著提高;GP的加入对PA6/GF的力学性能影响不大,但阻燃性能明显提高,当GP的含量为0.3份时,复合材料的极限氧指数达到30.1 %,阻燃等级达到UL 94 V-0级;GP在PA6/GF的燃烧过程中具有促进炭化和发泡双重作用。  相似文献   

14.
研究了水滑石对三聚氰胺氰尿酸盐(MCA)阻燃聚酰胺(PA6)的力学性能、热稳定性和阻燃性能的影响,讨论了水滑石在MCA阻燃PA6热分解历程和燃烧过程所发挥的作用。结果表明,随着水滑石用量从0%增加到15%,MCA阻燃PA6复合材料的拉伸强度从73 MPa下降到65 MPa,降幅约11%,冲击强度从40 J/m下降到34 J/m,降幅为15%。随着水滑石用量增加,MCA阻燃PA6的复合材料的热稳定性能下降,但材料的防火性能得到提高,另外,随着水滑石用量从0%增加到15%,M CA阻燃PA6的极限氧指数从32%升高到36%。  相似文献   

15.
利用双螺杆挤出机制备了玻纤阻燃增强回收聚酰胺6(PA6)系列复合材料,探讨了红磷母粒(P)、氢氧化镁[Mg(OH)2]、三聚氰胺尿酸盐(MCA)、硼酸锌(ZnBO3)、增韧剂乙烯辛烯共聚物接枝马来酸酐(POE-g-MAH)对阻燃增强回收PA6力学性能及灼热丝温度的影响,采用力学测试方法、灼热丝试验仪研究了回收PA6复合材料的力学性能和灼热丝温度。结果表明:在阻燃增强回收PA6体系中,用P、MCA复配效果最好,当质量比为2/1的P/MCA和POE-g-MAH加入量(质量分数)分别为2%和5%时,材料的拉伸强度为123.6 MPa,缺口冲击强度为10 kJ/m2,1.6 mm阻燃等级为V-0,灼热丝温度达到810℃,满足电子电气对材料高灼热丝温度的要求。  相似文献   

16.
《弹性体》2015,(1)
以二乙基次磷酸铝(ADP-12)为主阻燃剂,并用协效阻燃剂三聚氰胺氰尿酸盐(MCA)、三聚氰胺聚磷酸盐(MPP)制备无卤阻燃ABS复合材料,研究了各复配阻燃体系的热降解性能及其阻燃ABS材料的阻燃性能和力学性能。结果表明,ADP-12/MCA阻燃体系较ADP-12/MPP阻燃体系对ABS有着更好的成碳作用,使用ADP-12/MCA(10phr/20phr)制备的ABS阻燃材料氧指数达到39%,垂直燃烧显示出V-1级;填加阻燃剂后的ABS断裂伸长率、冲击强度损失较大,通过扫描电子显微镜(SEM)、偏光显微镜(POM)、相差显微镜(PCM)分析发现,阻燃剂在ABS中的团聚是造成ABS力学性能下降的原因。  相似文献   

17.
以二乙基亚膦酸铝盐(AlPi)和三聚氰胺氰脲酸盐(MCA)为阻燃剂,添加到热塑性聚酯弹性体(TPEE)中,采用挤出造粒方法制备出高性价比的阻燃TPEE复合材料。首先采用热失重分析仪研究了两种阻燃剂的热稳定性,进一步采用热失重分析、极限氧指数测试、垂直燃烧测试、力学性能测试以及扫描电子显微镜等对阻燃TPEE材料的热稳定性、阻燃性能、燃烧性能、力学性能以及复合材料的微观形貌进行了研究。结果表明,在相同阻燃剂用量下,添加AlPi的阻燃复合材料的阻燃效果、力学性能均优于添加MCA的阻燃复合材料,采用AlPi与MCA复配使用制备的阻燃TPEE复合材料的阻燃效果、力学性能介于二者之间,当TPEE,AlPi和MCA用量分别为83%,10%和5%时,阻燃复合材料的拉伸强度为24.19 MPa,断裂伸长率为515%,极限氧指数为30%,垂直燃烧测试达到V–0级。AlPi与MCA复配使用可提升阻燃TPEE材料的成炭性能和高温热稳定性。  相似文献   

18.
以二乙基次磷酸铝(Al Pi)和全氟丁基磺酸钾(PPFBS)为复配阻燃剂,在密炼机上通过熔融共混的方法制备Al Pi和PPFBS复配阻燃PA66复合材料,并通过热重质谱联用(TG–MS)和扫描电子显微镜(SEM)研究了复配阻燃剂对PA66复合材料阻燃性的影响及其阻燃机理。结果表明,当添加6份Al Pi和0.08份PPFBS的复配阻燃剂时,阻燃PA66复合材料可以通过垂直燃烧测试,阻燃等级达到V–0级,极限氧指数(LOI)为31.1%。复配阻燃体系的加入虽然降低了阻燃PA66复合材料的力学性能,但提高了阻燃PA66复合材料的热稳定性,阻燃PA66复合材料的残炭率由纯PA66的4.1%上升至10.2%,促进了连续、致密炭层的形成,而且燃烧过程中不断释放出不燃性气体。Al Pi和PPFBS复配后兼具凝聚相和气相阻燃机理,表现出良好的协效阻燃效果。  相似文献   

19.
以尼龙6(PA6)为基体材料,以多聚磷酸蜜胺(MPP)/双磷酸哌嗪为复合阻燃剂制备无卤阻燃PA6复合材料。采用扫描电镜观察了无卤阻燃PA6复合材料燃烧物表面的炭层形貌,分析了阻燃剂在PA6中的阻燃机理,研究了MPP用量对无卤阻燃PA6复合材料阻燃性能和流变行为的影响。结果表明:MPP质量分数为10%时,无卤阻燃PA6复合材料的极限氧指数达到33.8%,燃烧热为24.96 k J/g,燃烧后残留物质量保留率为18%。流变研究表明,随着MPP用量增大,无卤阻燃PA6复合材料的表观黏度降低。随着MPP用量增大,促进了燃烧炭层生成,产生了良好的阻燃协同作用。  相似文献   

20.
以尼龙6/玻璃纤维(PA6/GF)为基体材料,加入抗静电剂、无卤阻燃剂二乙基次膦酸铝(ADP)制备了矿用PA6/GF复合材料,考察了复合材料的抗静电性能和阻燃性能,以及ADP加入对复合材料抗静电性能、力学性能和热稳定性能的影响。结果表明,抗静电剂163及抗静电剂190的加入能提高PA6/GF复合材料的抗静电性能,当两者复配使用且质量比为1∶2时,材料表面电阻率降低至9.7×107Ω;阻燃剂ADP的加入能提高抗静电PA6/GF复合材料的阻燃性能,当阻燃剂质量分数达到15%时,复合材料阻燃等级达到UL94 V–0级;此外,无卤阻燃抗静电PA6/GF复合材料的综合性能优异,复合材料的抗静电性能、力学性能以及热稳定性能均能保持较好水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号