共查询到18条相似文献,搜索用时 140 毫秒
1.
在线网站的访问量大、访问数据类型繁杂,导致访问数据统计结果存在严重的丢包问题,为此提出基于增量贝叶斯分类模型的自适应访问大数据统计方法.首先分析用户 自适应访问行为.根据分析结果挖掘对应的访问初始数据.建立增量贝叶斯分类模型,利用该模型补全初始访问数据中的缺失部分,并实现对访问数据的分类处理.按照访问大数据的类别设置统... 相似文献
2.
假设空间复杂性是统计学习理论中用于分析学习模型泛化能力的关键因素.与数据无关的复杂度不同,Rademacher复杂度是与数据分布相关的,因而通常能得到比传统复杂度更紧致的泛化界表达.近年来,Rademacher复杂度在统计学习理论泛化能力分析的应用发展中起到了重要的作用.鉴于其重要性,本文梳理了各种形式的Rademacher复杂度及其与传统复杂度之间的关联性,并探讨了基于Rademacher复杂度进行学习模型泛化能力分析的基本技巧.考虑样本数据的独立同分布和非独立同分布两种产生环境,总结并分析了Rademacher复杂度在泛化能力分析方面的研究现状.展望了当前Rademacher复杂度在非监督框架与非序列环境等方面研究的不足,及其进一步应用与发展. 相似文献
3.
为有效使用大量未标注的图像进行分类,提出一种基于半监督学习的图像分类方法。通过共同的隐含话题桥接少量已标注的图像和大量未标注的图像,利用已标注图像的Must-link约束和Cannot-link约束提高未标注图像分类的精度。实验结果表明,该方法有效提高Caltech-101数据集和7类图像集约10%的分类精度。此外,针对目前绝大部分半监督图像分类方法不具备增量学习能力这一缺点,提出该方法的增量学习模型。实验结果表明,增量学习模型相比无增量学习模型提高近90%的计算效率。关键词半监督学习,图像分类,增量学习中图法分类号TP391。41IncrementalImageClassificationMethodBasedonSemi-SupervisedLearningLIANGPeng1,2,LIShao-Fa2,QINJiang-Wei2,LUOJian-Gao31(SchoolofComputerScienceandEngineering,GuangdongPolytechnicNormalUniversity,Guangzhou510665)2(SchoolofComputerScienceandEngineering,SouthChinaUniversityofTechnology,Guangzhou510006)3(DepartmentofComputer,GuangdongAIBPolytechnicCollege,Guangzhou510507)ABSTRACTInordertouselargenumbersofunlabeledimageseffectively,animageclassificationmethodisproposedbasedonsemi-supervisedlearning。Theproposedmethodbridgesalargeamountofunlabeledimagesandlimitednumbersoflabeledimagesbyexploitingthecommontopics。Theclassificationaccuracyisimprovedbyusingthemust-linkconstraintandcannot-linkconstraintoflabeledimages。TheexperimentalresultsonCaltech-101and7-classesimagedatasetdemonstratethattheclassificationaccuracyimprovesabout10%bytheproposedmethod。Furthermore,duetothepresentsemi-supervisedimageclassificationmethodslackingofincrementallearningability,anincrementalimplementationofourmethodisproposed。Comparingwithnon-incrementallearningmodelinliterature,theincrementallearningmethodimprovesthecomputationefficiencyofnearly90%。 相似文献
4.
5.
提出一种在数据缺失下增量学习贝叶斯网络的有效算法IBN—M。IBN—M用结构化的EM算法来补全数据集中缺失的数据,并且能在并行和启发式搜索策略提供的较大的搜索空间里搜索,有效地避免了采用结构化EM算法而导致的局部极值。同时采用增量学习的方法,解决了大规模数据学习存在的内存空间不足的问题。实验结果表明IBN-M算法在数据缺失下贝叶斯网络的增量学习中确实能够学出相对精确的网络模型。 相似文献
6.
7.
唐颖军 《小型微型计算机系统》2013,34(5)
现有场景分类方法只能识别原训练学习的图像类,对于新增图像类的识别任务,需要将其与原训练类合并后重新训练模型.在LDA(Latent Dirichlet Allocation)的基础上提出一种改进方法来训练生成模型,用于实现自然图像场景分类.根据狄雷克里参数的伪计数作用,改进了LDA模型学习方法.以训练图像的通用主题先验参数作为各类场景主题分布预设先验参数,推导各类场景的类主题构成变化,同时改善了EM参数推导过程中的慢收敛问题,实现了模型增量学习,有效地提高了模型的泛化能力.通过模型计算复杂度比较和增量学习实验对本文方法进行了验证,实验证明本文方法能以较低的时间复杂度取得较高的分类平均正确率. 相似文献
8.
9.
结合电信行业海量数据的特点,提出一种分组统计方法,充分利用有限的、较低的系统资源成本,满足海量数据统计分析应用指标计算的精确性和及时性,特别是通过传统全量或增量方法无法快速出数的指标。采用合适的分组,该方法也可以应用于互联网、金融、电子商务等其他行业。 相似文献
10.
SVM增量学习算法研究 总被引:1,自引:0,他引:1
SVM是在模式分类中表现优秀的一种分类方法。通过对现有SVM的两种增量算法的分析,给出了改进措施,在此基础上结合类加权思想.提出了一种新的加权增量SVM学习算法。并将其应用于Web文本分类中。 相似文献
11.
在DB2中提取增量数据的一种方法 总被引:1,自引:0,他引:1
史晶波 《计算机与数字工程》2004,32(6):15-16
在DB2数据库中提出了一种以表为单位的、求取增量数据的方法,并进而推广到支持SQL3的数据库。 相似文献
12.
13.
14.
数据仓库(DW)是随着时间不断变化的数据集合。因此数据增量更新技术是数据仓库技术能否成功实施的关键。在目前的数据增量更新算法基础上,给出一种采用中间件来进行数据增量更新的方案和算法。并通过实例将此方法与原增量更新算法进行了细致的比较,说明了此算法有较好的更新效率。 相似文献
15.
基于增量式遗传算法的分类规则挖掘 总被引:12,自引:1,他引:11
分类知识发现是数据挖掘的一项重要任务,目前研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。将遗传算法与分类规则挖掘问题相结合,提出了一种基于遗传算法的增量式的分类规则挖掘方法,并通过实例证明了该方法的有效性。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。 相似文献
16.
17.
基于支持向量机的多分类增量学习算法 总被引:8,自引:0,他引:8
支持向量机被成功地应用在分类和回归问题中,但是由于其需要求解二次规划,使得支持向量机在求解大规模数据上具有一定的缺陷,尤其是对于多分类问题,现有的支持向量机算法具有太高的算法复杂性。该文提出一种基于支持向量机的增量学习算法,适合多分类问题,并将之用于解决实际问题。 相似文献