首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. Flander  T. Suortti  K. Katina  K. Poutanen 《LWT》2011,44(3):656-664
The aim of this work was to study the effects of sourdough fermentation of wheat flour with Lactobacillus plantarum, on the quality attributes of mixed oat-wheat bread (51 g whole grain oat flour and 49 g/100 g white wheat flour). Emphasis was laid both on β-glucan stability as well as bread structure and sensory quality. The variables of the sourdough process were: dough yield (DY), fermentation time, fermentation temperature, and amount of sourdough added to the bread dough. The sourdough process was shown to be a feasible method for mixed oat-wheat bread, and, when optimized, provided bread quality equal to straight dough baking. A small amount (10g/100 g dough) of slack sourdough fermented at high temperature for a long time resulted in the most optimal sourdough bread with the highest specific volume (3.5 cm3/g), the lowest firmness after 3 days storage (0.31 kg), and low sensory sourness with high intensity of the crumb flavour. Wheat sourdough parameters did not affect the content of oat β-glucan in the bread. Additionally, both straight dough and sourdough bread contained 1.4-1.6 g β-glucan/100 g fresh bread. The average molecular weight of β-glucan was 5.5 × 105 in both types of bread, while that of oat flour was 10 × 105. This indicates that a slight degradation of β-glucan occurred during proofing and baking, and it was not affected by variation in the acidity of the bread between pH 4.9-5.8.  相似文献   

2.
Partially baked frozen (PBF) process prolongs bread shelf life, but diminishes its volume and crumb texture. Therefore, we investigated the possibility of using sourdough for the quality improvement in PBF wholewheat bread. Sourdough was fermented with either Lactobacillus plantarum, Lb. brevis or Leuconostoc mesenteroides mixed with yeast Candida humilis and added at 7.5, 15, 22.5 or 30% on bread dough basis. The choice of sourdough starter significantly affected bread acidity characteristics, flavour, specific volume, shape and crumb firmness. The sourdough amount and acetic acid content of bread inversely correlated to flavour score, specific volume, shape and crumb softness. The overall quality of PBF wholewheat bread was most efficiently improved after adding Lb. plantarum sourdough at 15–22.5%, resulting in retarded firming rate (74–94%) and improved specific volume (25–28%) in comparison with PBF bread without sourdough. Such sourdough has lactic to acetic acid higher than previously recommended for traditional sourbreads.  相似文献   

3.
Hervé Robert 《LWT》2006,39(3):256-265
The acidification properties, metabolic activity and technological performance of four individual Lactobacillus plantarum or Leuconostoc freeze-dried starters were investigated during a complete wheat sourdough breadmaking process including 0.2 g/100 g baker's yeast. Microbiological contents (lactic acid bacteria and yeasts), acidification characteristics (pH and total titratable acidity), soluble carbohydrates (maltose, glucose and fructose) and fermentative end-products (lactic and acetic acids, ethanol) contents were evaluated during both sourdough and corresponding bread dough fermentation. Biochemical and technological analysis of the resulting bread products are also presented. Some differences among strains in acidification properties and soluble carbohydrates availability were outlined both in sourdough and bread dough. Each individual Leuconostoc or Lb. plantarum starter was able to produce a characteristic fermentation and was found to ensure the production of breads with overall satisfactory acceptance.  相似文献   

4.
《Food microbiology》1999,16(1):37-43
Optimal conditions for sourdough production from waste bread containing sugar were studied. Using a dough prepared with 50% white bread crumb in water instead of 35% crumb, high levels of acidity were formed at 35°C with a commercial lyophilized starter containingLactobacillus plantarum. The effect of temperature (25 or 35°C) on titratable acidity development was equivalent to crumb concentration (35 or 50%). Cell growth stopped after 12–24 h but acid production continued for more than 48 h. Best results were obtained with whole wheat bread crumb followed by sweet-type crumb (about 8% sugar, dry basis) and white bread crumb. Two commercial sources ofLactobacillus plantarum, one meat starter and one bread starter, were screened based on acid production in fermented bread crumb.  相似文献   

5.
This study investigates the exploitation of buckwheat sourdough for the production of wheat bread. The fermentation induced extensive hydrolysis of buckwheat main storage proteins, but did not influence the total protein, starch and polyphenols content of buckwheat. Buckwheat sourdough was incorporated at 10 and 20?% (w/w) in wheat dough, and control doughs were produced with the addition of a chemically acidified (CA) buckwheat batter. The addition of buckwheat sourdough greatly affected the rheological properties of the dough, by inducing a strengthening of the gluten network and decrease in elasticity. The acidification of wheat dough also stimulated the baker’s yeast activity during proofing, resulting in higher release of CO2 in shorter times (volume of CO2 released (ml), control dough, 1,671.5; dough with 10?% sourdough, 2,600; dough with 10?% chemically acidified dough, 2,715.5). The properties of wheat bread were enhanced by the addition of 10?% buckwheat sourdough, which led to higher specific volume (control, 3.41?ml/g; bread with 10?% sourdough, 4.03?ml/g) and softer crumb (crumb hardness, control, 5.28?N; bread with 10?% sourdough, 3.93?N). On the other hand, the higher acidification level did not influence the bread volume, but slightly hardened the crumb (crumb hardness, bread with 20?% sourdough, 7.41?N; bread with 20?% chemically acidified dough, 6.48?N). The fermentation positively influenced the nutritional properties of buckwheat flour and wheat bread, in terms of polyphenols (control bread, 8.84?mg GAE/100?g; bread with 10 and 20?% sourdough, 17.83 and 18.20?mg GAE/100?g, respectively) and phytic acid contents. Incorporation of buckwheat sourdough also led to an extension in the shelf life of wheat bread, which became more evident for the higher addition level. Overall, the results of this study suggest that buckwheat sourdough represents a suitable tool for enhancing the overall quality and nutritional properties of wheat bread.  相似文献   

6.
The aim of this research was to study the effects of solid‐state fermentation (SSF) with Lactobacillus sakei, Pediococcus pentosaceus and P. acidilactici on lupine sourdough parameters and lupine sourdough influence on the physical dough properties and wheat bread quality. The results showed that lactic acid bacteria (LAB) significantly reduced the pH and increased total titratable acidity (TTA) of SSF lupine. The highest protease activity in lupine is excreted by L. sakei (187.1 ± 8.6 PU g?1), and the highest amylase activity, by P. pentosaceus (155.8 ± 7.5 AU g?1). Lupine sourdough has a significant effect on the rheological properties of doughs, which affect the baking characteristics of the final product. In conclusion, it can be said that L. sakei, P. pentosaceus and P. acidilactici could be used for lupine SSF, and the addition of up to the 10% SSF lupine products increases the wheat–lupine bread quality.  相似文献   

7.
Abstract: Acha and Iburu flours were singly subjected to sourdough fermentation with previously selected autochthonous starters. Sourdoughs were used (30%, wt/wt) as aroma carriers and acidifiers during short time fermentation with the addition of baker's yeast. Acha and Iburu sourdough breads were compared to wheat sourdough bread started with the same strains and to breads made with the same formula but using baker's yeast alone. During Acha and Iburu sourdough fermentations, starter lactic acid bacteria reached almost the same cell density found in wheat sourdoughs. Acidification was more intense. Iburu sourdough bread had the highest total titratable acidity, the lowest pH, and contained the highest levels of free amino acids and phytase activity. The values of in vitro protein digestibility did not differ between Acha sourdough and wheat sourdough breads, while Iburu sourdough bread showed a slightly lower value. Acha and Iburu sourdough breads showed lower specific volume and higher density with respect to wheat sourdough breads. Nevertheless, Acha and Iburu sourdough breads were preferred for hardness and resilience. As shown by sensory analysis, Acha and especially Iburu sourdough breads were appreciated for color, acid taste and flavor, and overall acceptability. Practical Application: This study was aimed at evaluating the technological and nutritional properties of the African cereals Acha and Iburu. Sourdough fermentation and the use of selected starters increased the nutritional and sensory qualities and the potential application for bakery industry.  相似文献   

8.
The application of Kluyveromyces marxianus (IFO 288), Lactobacillus delbrueckii ssp. bulgaricus (ATCC 11842) and Lactobacillus helveticus (ATCC 15009) as starter cultures for sourdough bread making was examined. Production of lactic and acetic acids, bread rising, volatile composition, shelf-life and organoleptic quality of the sourdough breads were evaluated. The amount of starter culture added to the flour, the dough fermentation temperature and the amount of sourdough used were examined in order to optimise the bread making process. The use of mixed cultures led to higher total titratable acidities and lactic acid concentrations compared to traditionally made breads. Highest acidity (3.41 g lactic acid/kg of bread) and highest resistance to mould spoilage were observed when bread was made using 50% sourdough containing 1% K. marxianus and 4% L. delbrueckii ssp. bulgaricus. The use of these cultures also improved the aroma of sourdough breads, as shown by sensory evaluations and as revealed by GC–MS analysis.  相似文献   

9.
The use of exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) is promising in sourdough fermentation. However, the knowledge of the effects of various species of LAB on steamed bread making remains limited. In this study, the effects of two LAB with high EPS-producing capacity, namely Weissella cibaria L32 and Lactobacillus brevis L17 on dough fermentation and steamed bread quality were estimated. The addition of these two LAB strains significantly increased the titratable acidity and protease activity during the dough fermentation, especially L. brevis L17. Although the in situ EPS synthesised by LAB could improve the steamed bread quality, excessive acidification of L. brevis L17 would still increase the protease activity and thus destroy its gluten network structure. As a result, the steamed bread fermented with L. brevis L17 had the lowest specific volume and hardest texture in comparison with the steamed bread fermented with W. cibaria L32 and with added EPS produced by W. cibaria L32 and L. brevis L17. These results indicated that different EPS-producing LAB exhibited distinctive dough fermentation characteristics, and the in situ EPS-producing W. cibaria L32 could improve steamed bread quality, which confirmed its potential application in steamed bread making.  相似文献   

10.
Response surface methodology was used to investigate the influence of three factors, sourdough fermentation time, proof time and amount of yeast addition on the quality of sourdough wheat bread. Each predictor variable was tested at five levels. Sourdough fermentation times were 5, 11, 20, 29 and 35 h, yeast addition rates were 0.05, 0.75, 1.77, 2.80 and 3.50% (flour weight basis) and proof times were 16, 40, 75, 110 and 134 min. The performance of two different starter culture types, a mixed strain starter culture called Böcker Reinzucht–Sauerteig Weizen and a single strain starter culture of Lactobacillus brevis, was compared by separately completing the experimental design for each. Independently non-acidified control bread was prepared. A range of loaf quality parameters was determined including pH, total titratable acidity, loaf height, specific volume, crumb mean cell area and crumb hardness. Overall breads with better specific volume values were achieved with the use of sourdough relative to the control. Results indicated that maximum loaf specific volume was achieved when L. brevis sourdough was used particularly when it was used in conjunction with a high rate of yeast. Given a lower rate of yeast addition however, the mixed strain starter culture yielded better bread.  相似文献   

11.
The majority of gluten-free breads on the market are of poor sensory and textural quality. Exopolysaccharides (EPS) formed from sucrose during sourdough fermentation can improve the technological properties of gluten-free breads and potentially replace hydrocolloids. In this study, the influence of in situ formed EPS on dough rheology and quality of gluten-free sorghum bread was investigated. Dextran forming Weissella cibaria MG1 was compared to reuteran producing Lactobacillus reuteri VIP and fructan forming L. reuteri Y2. EPS containing bread batters were prepared by adding 10% and 20% of sourdough. As control served batters and bread containing sourdoughs fermented without sucrose and batters and bread without sourdough addition. The amount of EPS formed in situ ranged from 0.6 to 8.0 g/kg sourdough. EPS formed during sourdough fermentation were responsible for the significant decrease in dough strength and elasticity, with in situ formed dextran exhibiting the strongest impact. Increased release of glucose and fructose from sucrose during fermentation enhanced CO? production of yeast. Organic acids in control sourdough breads induced hardening of the bread crumb. EPS formed during sourdough fermentation masked the effect of the organic acids and led to a softer crumb in the fresh and stored sorghum bread. Among EPS, dextran showed the best shelf life improvements. In addition to EPS, all three strains produced oligosaccharides during sorghum sourdough fermentation contributing to the nutritional benefits of gluten-free sorghum bread. Results of this study demonstrated that EPS formed during sourdough fermentation can be successfully applied in gluten-free sorghum flours to improve their bread-making potentials.  相似文献   

12.
Lactobacillus plantarum FST 1.7 has been recently shown to produce antifungal compounds, which improve the shelf life of wheat bread. In the present study, this strain was investigated for its ability to improve the quality and shelf life of gluten-free bread. Effects of incorporation of sourdough fermented by strain FST 1.7 into a gluten-free bread mixture were compared to those obtained with sourdough fermented by the non-antifungal strain Lactobacillus sanfranciscensis TMW 1.52 as well as to those obtained with chemically or non-acidified batters. Fundamental rheological tests revealed that the addition of sourdough to the gluten-free mix led to an increase in firmness and increase in elasticity overtime (P < 0.05). Bread characteristics such as pH, total titratable acidity, and crumb hardness (5-day storage) were evaluated. Results showed that the biologically acidified gluten-free breads were softer after 5 days than the chemically acidified gluten-free breads (P < 0.001). Antifungal challenge tests employing conidial suspensions of Fusarium culmorum were carried out using the sourdough, non-acidified batter and bread. The rate of mould growth for the fungal species used was retarded by L. plantarum FST 1.7 when compared to the controls. In conclusion, the results of this study indicate that L. plantarum FST 1.7 can be used to produce gluten-free bread with increased quality and shelf life.  相似文献   

13.
Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi were evaluated as starter cultures in the making of whole wheat sourdough bread. After 24 h of fermentation at 25 °C, both lactobacilli grew to the final cell numbers of ca. 109 cfu/g dough, and both doughs had similar pHs and total titratable acidities. In addition, the fermentation quotient of the dough with Lc. citreum HO12 was slightly lower than that of the dough with W. koreensis HO20 (1.6 versus 2.8). Sourdoughs and bread with 50% sourdough produced with the starter cultures exhibited consistent ability to retard the growth of bread spoilage fungi (Penicillium roqueforti and Aspergillus niger) and rope-forming bacterium (Bacillus subtilis). Sourdough breads underwent a significant reduction in bread firming during storage. It seems that both lactobacilli have the potential to improve the shelf-life of wheat bread. The results indicate that the selected lactobacilli have unique fermentation characteristics and produce sourdough breads with overall satisfactory quality.  相似文献   

14.
Pleurotus eryngii (DC.) Quél. powder was used in bread production. Three dough trials (0, 5 and 10% of mushroom) were obtained with commercial baker's yeast. P. eryngii powder was first tested against several yeast species; 10% P. eryngii trial was characterised by the highest pH and total titratable acidity. P. eryngii did not influence negatively the fermentation process, since all trials reached yeast levels of 108 CFU g−1. Mushroom powder decreased bread height and softness, increased crust redness and crumb void fraction and cell density and, although the breads were scored diverse, the overall assessment was comparable. The final breads provided higher concentrations of thiamin, riboflavin and pantothenic acid than control breads and, mostly importantly, supplied biotin, cobalamin and cholecalciferol generally absent in wheat bread. P. eryngii can be cultivated on food residues. Thus, its inclusion in functional bread production represents an optimal strategy for the valorisation of food processing by-products.  相似文献   

15.
The effect of kefir concentration on the quality of porous white bread has been investigated. Quality evaluation was done using flatbed scanning (FBS) for measuring crumb porosity, instrumental texture profile analysis (TPA), crust and crumb color (L * a * b *), moisture, specific volume, and density determination techniques. The correlations between porosity, brightness, and firmness were also investigated. Long fermentation time of the sourdough changed significantly (p<0.05) the cell mean area (mm2), cell mean perimeter (mm), firmness (N), chewiness (N), light reflectance, and specific volume (ml/g). A strong correlation was found between microstructure of porous white bread, brightness (L), and firmness from TPA test. Kefir prolonged the shelf life of bread.  相似文献   

16.
Sourdough fermentation has been shown to have numerous beneficial effects on bread quality, and nutritionally enhance soy‐supplemented bread by altering isoflavone chemical forms. Given this, the objective of this study was to compare the loaf quality and shelf life of sourdough and yeast‐leavened soy breads by various physical, thermal, and sensorial methods, and to assess the effects of fermentation by various microorganisms on isoflavone profile in dough and breads using high‐performance liquid chromatography analysis. Sourdough fermentation yielded a less extensible dough compared to yeast‐leavened soy dough (P < 0.001), and resulted in a harder bread crumb (P < 0.05) and lighter crust color (P < 0.001), compared to yeast‐leavened soy bread (Y‐B). Sensory analysis revealed a significantly higher overall liking of Y‐B compared to sourdough soy bread (SD‐B) (P < 0.001). Segmentation analysis of the cohort suggests that overall liking and bread consumption frequency may be determinants of Y‐B or SD‐B preference. SD‐B and Y‐B exhibited similar shelf‐life properties. Despite significantly different enthalpies associated with the melting of amylose‐lipid complexes, thermal analysis of the 2 soy breads stored for 10 d (ambient conditions) demonstrated no significant difference in water distribution and starch retrogradation (P < 0.05). Lastly, SD‐B was determined to have 32% of total isoflavones occurring in the aglycone form compared to 17% in Y‐B. These findings warrant further investigation of sourdough fermentation as a processing technique for quality and nutritional enhancement of soy‐based baked goods.  相似文献   

17.
Changes in the free ferulic acid (FFA) contents and antioxidant properties during bread making processes were determined. Experimental breads were produced from whole meal and white wheat and rye flours, and fermented using either baker’s yeast or sourdough starter. Sourdough fermented bread contained the highest content of FFA. Release of occurred mainly during dough fermentation. A further increase in the ferulic acid content in the bread crumb and a decrease in the crust was observed. Total antioxidant properties of sourdough bread, defined as the sum of lipophilic and hydrophilic compound activities, were significantly (p<0.05) higher than for yeast bread. Sourdough bread contained more methanol soluble phenolic compounds, proteins, tocochromanols, and oxidized products of fatty acids than yeast bread. The equilibrium between the anti- and pro-oxidative compound contents resulted in similar antioxidant properties for bread using both types of fermentation, and to results observed for the flour used for baking.  相似文献   

18.
Einkorn wheat (Tm, Triticum monococcum L.) has nutritional characteristics that clearly distinguish it from common wheat (Ta, Triticum aestivum L.) although its rheological dough properties may be less‐performing. Therefore, to better understand the potential of Tm for human consumption and food preparation, we compared the quality of bread baked with ancient einkorn and common wheat leavened with brewer's yeast and sourdough. Results showed that Tm had generally higher firmness (21.6 N vs. 10.5 N), and lower (65.6% vs. 71.2%) and less homogeneous porosity than Ta. These results suggest a minor potential in bread‐making regardless of the Tm high total protein content and underline a weaker gluten ability to expand and retain the fermentation gas. The selection of best‐performing einkorn varieties and leavening agents (e.g. fresh sourdough) can lead to bread products with acceptable texture features, meeting consumer demand for organic, natural and ancient products.  相似文献   

19.
This work evaluated, for the first time, the impact of in situ dextran (with different branching degree) produced by Weissella confusa Ck15 and Leuconostoc pseudomesenteroides DSM 20193 strains on the technological properties of chickpea–wheat sourdough bread prepared with three levels of chickpea flour (20, 30 and 40 g/100 g). In addition Lactiplantibacillus plantarum F8 strain (not dextran producing) and a control without sourdough fermentation were used. Specific volume, crumb hardness and moisture content of breads were evaluated during six days of storage. At the increase of chickpea flour from 20 to 40 g/100 g in the samples, the lowest decrease in bread volume (15%) occurred when W. confusa Ck15 was used. Moreover, these breads showed the lowest crumb hardness at each chickpea flour percentage, 46, 80 and 98 N. Hence, in situ dextran synthesis by Wconfusa Ck15 might counteract negative effects caused by gluten-free chickpea flour on technological properties of bread.  相似文献   

20.
The effects of wheat bran and of a Lactobacillus brevis-based bioingredient (LbBio), obtained after growth in flour-based medium, on quality of yeast-leavened wheat bread (WWB) were investigated. Bran was used in bread formulation by substituting a part (20 g/100 g) of white wheat flour (WBB), while LbBio was used instead of the water content (WWB + LbBio and WBB + LbBio). The use of LbBio in WWB resulted in the biological acidification of the dough due to lactic, phenyllactic and OH-phenyllactic acid contents determining a high fermentation quotient value and an improved bread texture and microbiological quality. Conversely, wheat bran reduced the specific volume and crumb hardness during storage at 25 °C, and affected the antibacterial ability of LbBio during 30 °C storage. Our findings demonstrated that LbBio counteracted the negative effects of bran and allowed to obtain an enriched fibre bread with specific volume and soft crumb comparable to bread without bran.Industrial relevanceBread is a perishable food with a short microbiological and physico-chemical shelf-life. The main microbiological alteration occurring into few days after baking is the “rope spoilage” caused by spore-forming bacteria originating from raw materials. This phenomenon, often misinterpreted as a sign of unsuccessful dough leavening and not visible from outside, is more common under industrial production conditions during the hot season causing large economic losses in the warm climates of Mediterranean countries, Africa and Australia. The use of sourdough often controls this alteration even if the industrial application of this traditional process is limited by the long leavening times. In this study, an innovative procedure for the preparation of yeast-leavened bread comprising the addition of a fermentation product from Lactobacillus brevis grown in a flour-based medium has been applied. The resulting fermentation product (LbBio bioingredient) acts as a sourdough acidifying the dough and improving the textural, physico-chemical and microbiological properties of the resulting bread. The application of bioingredient LbBio could represent an innovative strategy in industrial bread production to obtain acidified yeast-leavened products, thus, preventing the ropy spoilage and reducing the negative effects of bran addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号