首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于不同围压下三轴循环加、卸载试验和能量原理,研究页岩吸收轴向应变能1U、积聚和释放可释放弹性应变能eU、塑性变形及裂隙扩展消耗损耗能dU和径向膨胀变形消耗径向扩散能3U的能量转化全过程特征,揭示其受载过程的能量演化规律,建立基于能量突变的岩石强度失效判据。研究成果表明:不同围压下的页岩三轴循环加、卸载全过程,能量演化行为相似,体现为峰前以能量积聚为主,破坏过程发生能量释放和能量耗散,峰后残余强度下重新开始积聚能量,但能量积聚能力和效率不如峰前。岩石破坏阶段,可释放弹性应变能eU沿主裂隙大量释放,破裂岩块沿主裂隙发生位移和摩擦,消耗大量损耗能dU,径向应变3?显著增大,径向扩散能3U大幅增长。与峰前相比,峰后残余强度阶段可释放弹性应变能eU和损耗能dU的量值水平大幅下降但总体保持平稳,径向扩散能3U显著增加。围压对峰前各能量参数的分配比例影响不大,对峰后残余强度下岩石的能量积聚能力有一定提升作用。页岩和红砂岩的弹性能耗比K在峰前阶段随轴向应变的增加缓慢减小,期间变化平稳,在岩样发生强度失效时,拐点出现,增长速度突然增大,产生突变。  相似文献   

2.
 能量演化贯穿于岩石变形破坏的全过程,为了探究围压对受载岩石能量演化特征的影响规律,对红砂岩试样进行6种固定围压下的轴向加、卸载试验,揭示岩石弹性能和耗散能演化及分配规律的围压效应,并探讨工程采动岩体的能量演化路径。研究结果如下:(1) 提出岩石储能极限、最大耗散能密度、残余弹性能密度3种特征能量参数,可分别表征岩石的能量积聚、耗散和释放行为特征;(2) 峰前主要表现为能量积聚,峰后主要表现为能量耗散和释放,但随着围压的增高,岩石储能极限大致呈幂指数增长,残余弹性能密度呈线性增加,最大耗散能密度呈幂指数增加,表明围压增大了能量输入的强度,减弱了能量释放的烈度;(3) 围压越大,弹性能比例在峰前阶段越大,在峰值破坏时下降幅度越小,在峰后阶段二次上升所达到数值越接近于峰前值,表明围压提高了能量积聚的效率,提升了岩石破裂重组后的储能能力;(4) 工程采动岩体失稳破坏的能量路径是增加储能水平和降低储能极限2条途径的组合,能量路径斜率越大,越容易因为围压的突然卸载而发生强能量释放行为。  相似文献   

3.
大理岩三轴压缩破坏的能量特征分析   总被引:1,自引:0,他引:1  
岩石材料的变形和破坏与能量的变化密切相关。利用刚性伺服系统对大理岩岩样进行了系列三轴压缩试验,基于试验结果,对大理岩在加载过程中各阶段能量变化的具体数值进行了计算和整理,研究了能量变化在加载破坏各阶段分别与围压、应力、应变的内在联系。结果表明,初始围压的增大能够相当程度上提高岩样的破坏应变能。在既定围压下,岩样在弹性变形阶段的能量变化与偏应力和应变均成正线性关系。随着初始围压的增大,岩样所吸收的能量随偏应力变化的增长速率降低,随应变变化的增长速率加快。在三轴压缩过程中,岩样在弹性变形阶段所吸收的能量占总能量的比重较小,绝大部分能量耗散于岩样的屈服变形阶段;并且随着初始围压的增大,屈服变形阶段所吸收的能量占总能量的比重提高。  相似文献   

4.
对大理岩试样进行恒轴压条件下峰前、峰后卸围压破坏试验,研究岩石的变形破坏特征及破坏过程能量演化规律,得到以下结论:恒轴压条件下环向变形随卸荷速率增大而减小,而轴向变形变化很小,轴向变形没有明显的速率变化效应;峰前、峰后卸荷都为典型的剪切破坏,而峰后卸荷有明显的共轭剪切带;卸荷破坏过程能量转化大致分为能量积聚、能量耗散和能量释放3个阶段;卸荷速率越快,弹性应变能释放得越快、越剧烈;耗散能变化率随卸荷速率的增加也变大;耗散能变化率比弹性应变能变化率大一个数量级,能量快速耗散是大理岩卸荷破坏过程的主要特征。  相似文献   

5.
基于高应力条件下大理岩峰前卸围压试验和能量原理,研究岩样吸收应变能、塑性变形及裂纹扩展耗散应变能、环向变形消耗应变能和弹性应变能储存及释放的能量转化全过程特征,揭示其损伤破裂演化的应变能转化机制。峰前储存的弹性应变能较耗散应变能多,耗散应变能仅在临近峰值强度点附近才明显增加。峰后应力快速跌落伴随着弹性应变能的迅速释放和快速的塑性变形及裂隙扩展所耗散应变能。峰前、峰后应变能转化速率均随卸荷速率的增大而明显增大,特别是峰后转化速率增大得更为剧烈。而初始围压对应变能转化速率的影响与卸荷速率密切相关,快速卸荷时应变能转化速率随初始围压的升高而明显增大,而较慢速卸荷时随围压变化相对不明显,但初始围压增大明显加强峰前弹性应变能储存。峰后弹性应变能释放速率远大于环向变形消耗应变能速率,而吸收的应变能约与耗散应变能基本相等,故高应力强卸荷条件下硬性岩石常表现为近垂直于卸荷方向的张性破裂或劈裂特征,甚至出现岩爆现象。高应力强卸荷条件下大理岩具有峰前快速储存较多弹性应变能和相对较少的损伤耗能,而峰后弹性应变能快速大量释放和耗散,并伴有相对较快速地向卸荷方向的张裂变形消耗应变能的释放与耗散机制。  相似文献   

6.
不同应力路径下砂岩能耗特征的研究   总被引:1,自引:0,他引:1  
利用WDT–1500多功能材料试验机对砂岩试样进行定围升轴、卸围升轴及定轴卸围3种应力路径下的三轴试验,对比分析砂岩在这3种应力路径下的能量耗散规律,以及能量与围压、岩样变形之间的关系,从而提出不同应力路径下砂岩破坏点的确定方法。试验结果表明:在不同应力路径下岩石的变形破坏过程中都存在能量耗散与释放,能量的释放使得岩石发生破坏;卸围升轴和定轴卸围下砂岩的耗散能相对于定围升轴较小;耗散能和可释放弹性应变能主要受初始轴压和初始围压的影响,并且在不同变形阶段都有明显的围压效应。  相似文献   

7.
山岭隧道工程高地应力岩爆现象的发生受多种因素的影响,其中岩石卸围压过程中的破坏特性是其重要的判别标志之一。本文结合二广高速公路茅田界隧道隧址变质砂岩常规三轴试验不同围压条件下峰前卸围压试验,开展岩石破坏的全过程实验研究,并结合破裂过程的声发射特征探讨了岩石的变形破坏特征,初步分析了卸载破坏诱发岩爆机理基本特征。研究结果表明:随着围压不断的增加,变质砂岩变形特性表现出低围压下的脆性向高围压下塑性的转换,说明围压的增加抑制了岩样的破坏,提高了岩样的承载能力。在相同围压条件下,较快的卸载速率使岩样破坏时释放的能量更小,说明岩样破坏前所能储存的极限储存能更少,这样岩爆就会更容易发生。此外,变质砂岩破坏初期是以张性破坏为主,峰前卸围压,高地应力下变质砂岩表现出张剪性破坏特征,且岩样表现出的脆性随围压强度增大而减小。  相似文献   

8.
为了分析煤矿开采过程中煤体损伤的能量演化规律和渗透特性,采用控制围压、加卸载轴压的方式开展三轴循环加卸载渗流试验,分析在不同围压下弹性参数(弹性模量、泊松比)、能量密度随着轴向应变的演化特征,并引入弹塑性材料的损伤变量,进而探讨损伤变量和渗透率的关系。结果表明:在加卸载过程中,进入屈服阶段后,弹性模量开始降低,耗散能密度、耗散能比例以及损伤变量逐渐增大,进入峰后阶段后演化加剧,说明岩石破坏是一个能量耗散的损伤演化过程;以应力屈服点为分界点,屈服前渗透率和损伤变量呈现幂函数关系;屈服后二者具有较好的指数函数关系,并拟合出不同围压下二者的关系公式;渗透率随围压的增加而减小,说明围压对渗透有抑制作用。  相似文献   

9.
单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究   总被引:1,自引:0,他引:1  
能量的积聚与释放伴随发生在节理岩体受荷变形全过程。为探寻加载过程中节理岩体能量演化规律,基于单轴压缩试验及岩石能量原理,研究非贯通节理岩体变形破坏过程中总能量U、弹性应变能U~e及耗散能U~d的转化特征,揭示节理岩体损伤破坏能量演化机制,建立了基于弹性能耗比变化率(dK/dε)的非贯通节理岩体裂缝扩展及强度失效准则。研究表明:节理存在对岩体中能量的存储具有明显的削弱作用,峰值点总能量与弹性应变能随节理数量的增加逐渐减小;节理岩体的弹性应变能U~e及耗散能U~d变化曲线存在"阶梯状"突减或突增,双节理岩样弹性应变能和耗散能突增或突减的数值明显小于单节理岩样;峰前与峰后阶段弹性能耗比变化率发生连续突变(dK/dε正负交替变换)与突变(dK/dε保持为正无穷)作为节理岩体裂缝扩展及强度失效判据。  相似文献   

10.
岩石卸围压破坏过程的能量耗散分析   总被引:3,自引:0,他引:3  
 在分析试验机与岩样之间能量交换的基础上,综合分析岩样卸围压破坏过程的能量耗散规律,以及能量与岩样变形、围压之间的关系。研究结果表明,在卸围压破坏过程中,能量耗散与岩样的破坏特征及施加围压有较大关系;延性破坏的能量耗散大于脆性破坏,同一种破坏模式下,岩样的能量耗散随施加围压的增大而增大。2种卸围压试验均表明,能量耗散与时间呈非线性关系,与侧向变形呈线性关系,且在相同侧胀水平下,施加围压越大,能量耗散越大,岩样更具脆性破坏特征。  相似文献   

11.
基于能量原理的卸围压试验与岩爆判据研究   总被引:4,自引:7,他引:4  
 岩爆是高地应力区地下工程开挖卸荷产生的地质灾害现象。按照地下硐室开挖过程中围岩的实际受力状态,开展脆性花岗岩常规三轴、不同控制方式、不同卸载速率条件下峰前、峰后卸围压试验,研究岩石破坏的全过程,从能量的原理探讨岩石破坏过程能量积聚–释放的全过程,研究岩石的变形破坏特征、能量集聚–耗散–释放特征和基于能量原理的岩爆判据。试验结果表明:无论是峰前还是峰后卸围压,岩样都表现脆性破坏的特征,峰前卸围压时岩样破坏表现出的脆性比峰后卸围压更为强烈;且无论是加载还是不同控制方式卸围压条件下,岩石在破坏前所能够储存的最大应变能受围压和卸载速率的控制。从能量的观点和工程应用的角度出发,提出一种新的能量判别指标:岩体实际储存能量与极限能量之比为U/U0,该指标真实合理地反映地下工程开挖卸荷过程中围岩的能量变化过程,围岩能量的积聚程度以及岩爆的发生程度,通过数值仿真计算可以更合理地定量预测高应力下地下工程开挖过程中岩爆发生的强度和位置。  相似文献   

12.
 高应力条件下,岩石卸荷的力学响应特征及发生机制是高地应力地区岩体工程开挖稳定性评价及控制的关键问题。基于不同卸荷速率和初始围压条件下三轴高应力大理岩卸围压试验,结合分形理论和能量原理,研究高应力卸荷条件下岩石破裂块度分布规律及其与能量耗散和释放的相关性。高应力条件下三轴卸围压大理岩试样碎块分形性质具有较强的局部性,仅在小于某一特征尺度(分形特征尺寸阈值)范围内表现出较好的分形性质,其碎块分维数均大于2,分维数随卸荷速率增大而单调减小,但初始围压对分维数的影响与卸荷速率密切相关。相对常规三轴压缩岩样,高围压下卸荷岩样虽然峰值点附近耗散和储存应变相对少得多,但其峰值前、后应变能转化速率相对大得多,特别是峰后的弹性应变能释放速率和环向膨胀消耗应变能速率。高应力卸荷条件下卸荷速率越快、初始围压越高,峰前损伤和峰后破裂贯通历时越短,峰值点处耗散应变能和储存弹性应变能越大,峰前、峰后应变能转化速率越快,破碎岩样的分形特征尺寸阈值越大,分维数越小,张性破裂程度和性质越强。  相似文献   

13.
不同含水状态对煤岩样损伤演化过程有重要的影响,为了研究不同含水状态煤岩样单轴压缩全过程煤岩样损伤演化过程能量释放规律,并基于能量贡献率与振铃计数贡献率共同准则拾取关键孕灾声发射信号,以指导声发射技术在岩体工程监测和灾害预警中的应用。利用岩石力学试验系统和全信息声发射信息分析仪,开展不同含水状态煤岩样的单轴压缩试验,主要对不同含水状态下煤岩样的力学特性、能量释放规律、破坏模式以及关键部位孕灾声发射信号进行拾取。试验结果表明,不同含水状态煤岩样力学性质各不相同,含水率的增大能有效弱化煤岩样强度。不同含水状态煤岩样能量释放规律各不相同,水在软化煤岩基质的同时,也对弹性应变能进行大量吸收,进一步导致含水煤岩受载屈服阶段弹性应变能占比增大,耗散应变能迅速降低,对应蓄能期(声发射平静期),待其孔隙水压力增大到对裂隙进行了扩展与贯通,即试样马上进入破坏阶段。不同含水状态下煤岩样单轴压缩破坏模式均为剪切形式,且含水率增大,剪切裂纹趋于复杂。同时验证了基于能量贡献率和振铃计数贡献率计算准则的声发射信号拾取方法可行,并与其他常规声发射参数形成对应关系,可为具体分析前兆特征分析和灾变预警提供参考。  相似文献   

14.
 根据大理岩加荷破坏与卸荷破坏试验结果,研究大理岩不同应力路径下的破坏特征和能量演化规律。结果表明,常规三轴破坏岩样吸收总能量 高于单轴压缩吸收总能量,峰值强度后常规三轴弹性应变能释放比单轴缓慢,储能极限高于单轴压缩的储能极限。随着卸荷初始围压升高,岩样峰值强度和峰值应变增大,破坏形式由张拉–剪切破坏向剪切破坏过渡,岩样在峰值强度处吸收的总能量 和弹性能 增大,耗散能 却没有明显变化,围压对峰值强度处的 和 无明显影响。卸荷速度增大,岩样峰值强度和峰值应变减小,破坏形式由剪切破坏向张拉–剪切破坏过渡,岩样在峰值点处吸收的总能量 和弹性能 减小,耗散能 却没有明显变化,卸荷速度对 和 无明显影响。加荷与卸荷2种应力路径下,岩样在到达峰值强度时所吸收的总能量和储能极限都与峰值强度呈线性关系。  相似文献   

15.
《Planning》2019,(10):1258-1265
选择5种不同层理倾角的千枚岩进行单轴一次加卸载试验,探讨层理倾角对千枚岩变形破坏过程中能量演化及岩爆倾向性影响.试验结果如下:各岩样应变能演化相似,在应力峰值前表现为能量积聚,峰值后为能量释放和耗散.但随着层理倾角的增大,其储能极限、残余弹性能和最大耗散能均呈U型变化,通过拟合在60°均取得最小值;随层理倾角增大,在峰前岩样的弹性能比例值呈倒U型变化,其中在60°取得最大值,表明峰前在60°处用于层理压密做的功最少.而且在峰前最大弹性能比例随层理倾角增加变化幅值较小,体现出峰前层理倾角对储能效率影响较小.在峰后弹性能比例下降幅度大小为60°>30°> 45°> 90°> 0°,说明含0°层理岩样的峰后裂隙发育最不充分表现出的脆性最大;结合弹性变形能指数(Wet)和冲击能量指数(Wcf)的优点建立新判据储能性能和峰后继续破坏耗散能的比例(W),并计算各倾角岩样的W值,其从小到大为60°→45°→30°→90°→0°.  相似文献   

16.
隧道、硐室和矿井等地下空间,应力卸荷是导致岩体破坏的主要原因之一。因此,为研究卸荷条件下的岩石破坏行为,以页岩为研究对象,开展恒定轴压卸围压三轴压缩试验。基于能量耗散与释放原理,分析试验不同阶段能量演化规律及临界围压对试样吸收的总能量和耗散能的影响,探讨卸荷条件下岩石破坏条件。研究结果表明,卸荷试验能量变化主要分为能量聚集阶段、能量耗散阶段和能量释放3个阶段:(1)外力对试样做的功主要以弹性能形式存在;(2)外力所做的功主要耗散于微裂纹形成、扩展,岩石强度降低,此阶段耗散能迅速增加而弹性能基本保持不变;(3)当岩石强度降低到一定程度时,弹性能瞬间释放,岩石破坏。  相似文献   

17.
 为认识峰后破裂岩样在连续载荷作用下的变形、破坏特征及应变能变化情况,利用MTS815岩石力学试验系统,对永川煤矿砂岩样进行三轴等围压试验。在试验基础上提出岩样破裂比(r)概念,它反映峰后破裂岩样相对于完整岩样的破裂程度,r越小表示岩样破裂程度越高,r最大值为1,最小值为岩样残余强度与峰值强度之比。结果分析表明:低围压作用下破裂比与其对应割线模量、轴向应变量、应变能之间的线性关系较好;峰后破裂砂岩样在连续加载后,呈现“X”剪切破坏模式;岩石最大泊松比可通过峰后连续加载试验确定。研究结论对认识岩石突出和岩爆机制有重要意义。  相似文献   

18.
不同应力路径下大理岩破坏过程的声发射特性   总被引:3,自引:1,他引:2  
 对大理岩试样进行常规三轴和卸围压破坏过程的声发射参数测试,研究加荷和卸荷两种应力路径下大理岩破坏过程的声发射特性差异。结果表明,常规三轴试验中,声发射幅值随着围压的增加逐渐增大,岩样破坏前的声发射累计释放能量呈线性增加,最大振铃计数率和能量计数率不是出现在峰值,而是出现在峰后应力跌落阶段,峰值应力前的屈服阶段和残余强度前各存在一个平静期,振铃计数率的每个突增都与应力降相对应。卸围压试验中,岩样破坏后声发射幅值明显增大,卸荷开始后振铃计数率和能量计数率出现突增,声发射累计释放能量呈非线性迅速增加,根据声发射累计释放能量增速可以将岩样破坏过程分为3个阶段:弹性阶段、弹塑性阶段和塑性阶段,在大规模声发射出现前期会出现平静期,两者会交替发生。与常规三轴试验相比,卸荷声发射振铃计数率更大,累计释放能量更高,说明大理岩卸荷破坏更加剧烈。  相似文献   

19.
不同加载路径下砂岩破坏模式试验研究   总被引:1,自引:1,他引:0  
 鉴于以往对岩石不同加载路径下破坏模式综合研究的成果较少,采用MTS815刚性伺服试验机,对砂岩岩样分别进行单轴压缩、常规三轴压缩和三轴峰前、峰后卸围压4种不同加载路径下的试验,研究砂岩岩样在不同加载路径下的破坏模式,并对砂岩岩样破坏前、后各能量指标进行计算,采用能量耗散分析的方法探讨不同加载路径下砂岩岩样存在多种破坏模式的原因。研究结果表明,在单轴压缩试验中,砂岩岩样的破坏模式以劈裂破坏为主,单剪破坏为辅。常规三轴压缩和峰后卸围压试验,围压较低时砂岩岩样多发生单一剪切或劈裂破坏;围压较高时,砂岩岩样多发生二者组合破坏。三轴峰前卸围压,围压相对较低时,砂岩岩样多发生剪切与横向剪切组合破坏;围压相对较高时,砂岩岩样多发生劈裂与剪切组合破坏。随着围压的增加,常规三轴压缩试验中,砂岩岩样更易发生剪切破坏;而对于三轴峰前、峰后卸围压试验,砂岩岩样发生剪切破坏呈先增加后降低的趋势。不同加载路径下岩样破坏模式与岩样破坏前、后能量指标数值存在一定的对应关系,各能量指标数值较小时,岩样多发生单一破坏模式,且破坏后形成的块体相对较完整;各能量指标数值较大时,岩样多发生组合破坏模式,且破坏后形成的块体相对较破碎。  相似文献   

20.
 为揭示石英云母片岩变形及能量特征,针对平行片理和垂直片理方向的试件,基于MTS815岩石力学试验平台开展不同围压下的卸荷试验,分别从体积变形系数、能量比、能量变化率、能量应力增量比等方面系统研究高围压卸荷条件下石英云母片岩变形破坏特征及能量演化规律。结果表明:平行组试件径向变形发育能力及各特征应力量值均高于垂直组;其能量演化规律具有显著的围压效应,2组试件能量特性差异明显;与垂直组相比,平行组试件峰前、峰后应变能变化率较低且高围压下裂隙发育及塑性变形程度更高;提出能量应力增量比以表征试件能量变化对卸荷程度的敏感性,2组试件峰前能量应力增量比均随围压的增加而增加,但峰后弹性能应力增量比几乎不受初始围压的影响,垂直组峰前、峰后弹性能应力增量比和耗散能应力增量比量值均大于平行组。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号