共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a correlation between the autolysis of barleys and their β-glucan solubilase activities. There is no correlation between autolysis and nitrogen content, β-glucan level, Milling Energy or Zeleny sedimentation value of the barley. Activities of endo-β-glucanase are inversely related to coarse-grind Hot Water Extract obtained from malts grown for 4 days. Whilst β-glucanase is not involved in the early stages of autolysis, β-glucan solubilase, present in large amounts in untreated barley, has a role both in extracting and degrading β-glucan. Barleys with low β-glucan content or high β-glucan solubilase modify more rapidly. 相似文献
2.
Eight barley cultivars grown under the same agronomic conditions and samples of Tokak cultivar grown at six different sites of Turkey were used in this study. There were significant differences among the barley cultivars and growing locations in terms of β-glucan content (p<0.05). Among malt quality criteria tested for the 8 barley cultivars; friability, viscosity, Kolbach index and extract difference showed significant correlations (p<0.05) with the total β-glucan content. Similar correlations were also observed between the malt quality criteria (Kolbach index and extract difference) and β-glucan contents for the Tokak samples grown at different sites. 相似文献
3.
During malting the water-insoluble β-glucan of barley is diminished whilst water-soluble gum is little decreased. The amount of β-glucan surviving into malt depends on variety but barleys rich in glucan give malts with high β-glucan levels. The β-glucan content of barley depends on variety and growth site. β-Glucan solubilase survives mashing and catalyses the release of hemicellulose into solution. There is no correlation between the β-glucan content of malt and the amount released into wort. However, barley adjuncts containing high levels of β-glucan give worts rich in β-glucan. β-Glucan dissolution in mashing is dependent on time, temperature, grist particle size and liquor: grist ratio. Use of adjuncts derived from barley contribute relatively more β-glucan in wort, coinciding with reduced rates of wort separation, but these can be increased by using a β-glucanase produced by growing the fungus Trichoderma viride on spent grains. 相似文献
4.
α-Amylases produced in germinated barley and incubated de-embryonated barley kernels (cv. Bonanza), in the absence and presence of gibberellic acid (GA3), were analyzed qualitatively by polyacrylamide gel isoelectric focusing (PAG-IEF) and quantitatively by chromatofocusing. Identical patterns of α-amylase components were obtained for both germinated barley and incubated de-embryonated barley kernels at each germination/incubation stage, in the absence or presence of GA3. Total α-amylase increased rapidly in the germinating whole seed whereas in the incubating de-embryonated grain the α-amylase activity increase was much slower. Addition of exogenous GA3 did not induce production of higher levels of α-amylase in either the germinating whole or incubating de-embryonated barley kernel. Quantitative chromatofocusing analysis revealed that the proportion of α-amylase III to α-amylase II activity decreased linearly with germination time in the whole grain but remained constant in the incubating de-embryonated grain in the absence or presence of GA3. The major proportion of α-amylase activity in the germinating whole grain and incubating de-embryonated grain was synthesized in the form of α-amylase II components. However, α-amylase I represented a larger proportion of the total α-amylase activity produced in the incubating de-embryonated grain, as compared to the germinating whole seed in the absence or presence of GA3. These results suggest that embryo excision differentially affects production of α-amylase II as compared to α-amylase I. 相似文献
5.
β-Amylase was extracted from barley or malt using four physical techniques to break up grists which had been prepared using a Moulinex coffee grinder. Grinding with a Polytron homogeniser apparently completely disrupted all cells, as determined by transmission electron microscopy, and increased the efficiency of extraction of β-amylase from barley by more than 30%. The other treatments tested were without value . The β-amylase activity in extracts of barley or malt was assayed by measuring the production of reducing sugars from reduced soluble starch, using a PAHBAH reagent. α-Amylase, which interferes with the quantitation of β-amylase in extracts of malt, was not totally inactivated by the chelating buffer used for enzyme extraction or by several other chelating agents. α-Amylase activity was quantified specifically using Phadebas. Using purified α-amylase a calibration was developed which related activity, as determined using Phadebas, to reducing power units. Thus the α-amylase activity present in an extract containing β-amylase could be determined using Phadebas and the reducing power equivalent activity subtracted from the total “apparent” activity to give the actual β-amylase activity. α-Glucosidase and limit dextrinase activities are believed to be too low to have a significant effect on the apparent β-amylase . The soluble and bound β-amylase activities were measured in samples taken from micromalting barley (Alexis). Dry weight losses increased to over 10% after 8 days germination. Antibiotics, applied during steeping, were used to control microbes in one experiment. However, their use checked germination and reduced malting losses to 8.4% in 8 days germination. The soluble enzyme present in extracts from steeped barley and early stages of germination was activated (20–40%) by additions of the reducing agent DTT . 相似文献
6.
A. W. MacGregor 《Journal of the Institute of Brewing》1977,83(2):100-103
An α-amylase component from malted barley was isolated and purified using aqueous extraction at pH 8·0, heat treatment of the extract at 70°C, specific precipitation with glycogen and ion exchange chromatography on carboxymethyl (CM) and diethylaminoethyl (DEAE) cellulose. The enzyme preparation was shown to be pure by disc electrophoresis at pH 8·9 and iso-electricfocusing on polyacrylamide gel in a pH 4–8 gradient. 相似文献
7.
Immunoaffinity chromatography was used to purify the high pl α-amylase (α-amylase II) in a one step procedure after fractionation of the whole barley malt extract on Sephadex G25. The immunoglobulin G (IgG) fraction of an immune serum specific for the malt α-amylase II was immobilized on Ultrogel. A mild desorption procedure was used, combining distilled water elution with an interrupted elution. The purification was achieved within half a day including kernel extraction. The quality of the purification was assayed by SDS polyacrylamide gel electrophoresis, crossed immunoelectrophoresis and isoelectric focusing. For the second technique, an immune serum was used which was polyspecific for malt proteins including the high pl α-amylase (α-amylase II). The effect of this procedure on the specific activity of the enzyme and on its antigenicity was evaluated. The results underline the efficiency of the purification procedure and indicate that α-amylase II accounts for a few percent of the total soluble protein in malts. However, the α-amylase II fraction was not completely free from α-amylase I. The procedure resulted in a partial loss of the enzymatic activity but not of the antigenicity. 相似文献
8.
An enzyme is described which catalyzes the release of soluble β-glucan from insoluble barley endosperm cell walls. This enzyme increases in activity throughout malting. It has been partially purified and found to behave in the same way as an acidic carboxypeptidase on isoelectric focusing and in its sensitivity to inhibitors and activators and to heating. The importance of the β-glucan solubilizing enzyme in malting and mashing is discussed. An improved method for β-glucan determination is described. 相似文献
9.
Significant β-glucanolysis takes place during mashing and is catalysed by a β-glucanase which is specific to mixed-linkage β-glucans. The enzyme develops during the germination of barley, but is rapidly and extensively destroyed in kilning. Partially-purified preparations of β-glucanase are protected from denaturation by heat if their solutions are adjusted to pH 4 or if bovine serum albumin is added. However the most effective stabiliser of the enzyme is reduced glutathione. Oligosaccharides containing three and four glucosyl units are produced by the action of β-glucanase and they are further converted during malting and mashing by a different enzyme(s) to disaccharides and glucose. 相似文献
10.
Analysis according to the EBC protocol, immunological determination of a α-amylase and estimation of malt β-glucan using the Calcofluor-FIA method, were used to screen 327 barley breeding lines for malting quality. The results obtained with the α-amylase and β-glucan methods are highly correlated to the important malt quality paramters: extract yield and β-glucan content in the wort. It is recommended that either of the two methods, which are simple to perform are used as prescreening tools in breeding programmes for malting barley. 相似文献
11.
Multiple forms of α-amylase arise from translation of separate messages and post-translational proteolytic modification during malting. α-amylase activity is tolerant of proteolysis. The enzyme appears to have two domains one of which is associated with starch cleavage. The second site which binds cyclodextrin is destroyed by proteolysis. Cleavage yields a low molecular weight form which retains α-amylase activity. 相似文献
12.
The use of cellulase preparations from Trichoderma reesii for measuring the total β-glucan content of barley was examined. The activities of amyloglucosidase and β-glucanase in the cellulase varied considerably between batches, and different heat treatments were necessary to ensure that amyloglucosidase was reduced to an insignificant level while adequate β-glucanase activity was retained. After suitable treatment the cellulase was used to study variation of total β-glucan concentration in some barley cultivars. Significant varietal variation was found in the fifteen genotypes examined. These had β-glucan concentrations in the range 2.7% to 5.2% dry weight. 相似文献
13.
J. Hejgaard 《Journal of the Institute of Brewing》1977,83(2):94-96
Two-dimensional immunoelectrophoretic techniques were used to elucidate the origin of a dominant beer antigen 1. Immunochemical identity was found between a protein Z associated with β-amylase in extracts of barley and one form of the beer antigen 1a. Immunochemical identity was also found between a papain-modified form of protein Z and the antigen form 1b from beer. The results indicate that protein Z is very resistant to degradation and denaturation during malting and brewing. 相似文献
14.
The Analysis Committee of the European Brewery Convention carried out a collaborative trial on malts using the specific analysis methods for α- and β-amylase activities based on dyed substrates supplied by MegaZyme (Aust.) Pty. Ltd. The repeatability and reproducibility values for the methods were judged to be unsatisfactory and consequently the methods were not recommended for Analytica-EBC. 相似文献
15.
Harri Ranki 《Journal of the Institute of Brewing》1990,96(5):307-309
Aleurone-free scutella prepared from barley (Hordeum vulgare L. cv Himalaya) grains after 1 day of germination released α-amylase into the incubation medium at a constant rate for at least 2 hours. The release was arrested by a Golgi inhibitor, monensin which caused accumulation of α-amylase inside the scutella instead of the incubation medium. Immunofluorescence labeling showed that α-amylase in the scutella was located in the epithelial cells, no label was found in the parenchyma cells. These results indicate that the scutellar epithelial cells have a true capacity to synthesize and secrete α-amylase. 相似文献
16.
The aim of this study was to determine the role of low molecular weight thiols both in the release and activation of β-amylase during grain germination. In quiescent barley grains (Hordeum vulgare L. cv. Torrent) about 55% of the β-amylase was extracted with buffer, the remaining 45% was in the bound form. During micromalting the bound form was progressively solubilised between germination days 1 and 4. When free β-amylase, extracted from ungerminated grains, was incubated with dithiothreitol the enzymic activity increased by 15%-20%. This activation did not occur when free β-amylase, from grain germinated for 3 days or more, was incubated with DTT. The release of bound β-amylase with thiols was pH dependant, occurring most rapidly at and above pH 8.0. At the onset of germination the embryo released soluble thiol (approximately 5 nmol per embryo) into the endosperm. Degermed grains were dosed with reduced glutathione and incubated for 72 h. The addition of 60 nmol glutathione caused the release of about 80% of the bound β-amylase. When less glutathione was used, 5 nmol (an amount similar to that released by the embryo in vivo) no significant release of the bound enzyme was detected. When degermed grains were dosed with oxidised glutathione (60 nmol), no bound β-amylase was released. However, addition of the disulphide bis-hydroxyethyldisulphide (60 nmol) did cause the release of about 90% of the bound enzyme. The aleurone layer reduced the bis-hydroxyethyldisulphide to a thiol, presumably 2-mercaptoethanol. Oxidised glutathione and cystine were not significantly reduced to thiols by isolated aleurone layers. The aleurone layer did cause the disappearance of cysteine from solution. When preparations of bound β-amylase were incubated with extracts from the endosperms of grains germinated for three days, the bound enzyme was released. This release was due to the high molecu lar weight material (>5 kDa) in the extract and not to low molecular weight thiols. It seems unlikely that simple thiols, such as glutathione, are solely responsible for the release of bound β-amylase. 相似文献
17.
Okokon U. EtokAkpan 《Journal of the Institute of Brewing》1992,98(4):301-304
Worts prepared from two cultivars of Nigerian grown sorghum six day melts — LI87 end SK5912 had β-D-glucan levels off five to seven times more than that of proctor barley. In contrast to barley, malting of the sorghums results in the release off more β-D-glucan into wort. Apparently, this is due to increasing levels of β-glucan solubilase and (1→3)-β-glucanase during malting with no significant (1→3, 1→4)-β-glucanase activity. 相似文献
18.
J. E. Vickers S. E. Hamilton J. de Jersey R. J. Henry R. J. Marschke P. A. Inkerman 《Journal of the Institute of Brewing》1996,102(2):75-78
Bacillus licheniformis α-amylase, a thermostable starch-degrading enzyme, has been assessed as a candidate enzyme for the genetic transformation of malting barley. The temperature optimum, pH optimum and thermostability of B. licheniformis α-amylase were compared with those of barley α-amylase. The bacterial enzyme has a higher pH optimum (?9), a higher temperature optimum (?90°C) and much higher thermostability at elevated temperatures than the barley enzyme. The specific activity of the bacterial enzyme under conditions of pH and temperature relevant to the brewing process (pH 5.5, 65°C) is ?1.5-fold higher than that of the barley enzyme. Measurements of α-amylase activity during a micro-mash showed that the bacterial enzyme is at least as stable as the barley enzyme under these conditions, and that a level of expression for the bacterial enzyme corresponding to ?0.5% of total malt protein would approximately double the α-amylase activity in the mash. B. licheniformis α-amylase activity was rapidly eliminated by boiling following mashing as would occur during brewing. The combined results suggest that barley expressing the bacterial enzyme may be useful in the brewing process. 相似文献
19.
A study has been made of the variation between varieties in some properties of barley and malt and how this variation relates to malt hot water extract (HWE). The development of enzyme activity along the grain during germination was investigated. In this first paper we have examined β-glucan-related characters and found significant varietal variation in maximum enzyme activities and in the activities in different sections of grain during germination. Varietal variation was greater than environmental variation for each character. The fraction of β-glucan soluble in acid was the character most highly correlated with HWE. 相似文献
20.
Quantitative extraction of malt and germinated barley α-amylases from polyacrylamide gels after isoelectricfocusing was achieved using bovine serum albumin (2 mg/ml) in the extracting medium. Sharp bands of activity were obtained when extracts from polyacrylamide gels were re-focused on another gel. This technique demonstrated that α-amylase III was the major component in malt and germinated barley extracts. This enzyme was converted to α-amylase II when such extracts were heated at 70°C. 相似文献