首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
隧道施工具有隐蔽性、不确定性等特点,而空洞作为常见的不良地质现象在隧道施工过程中极易引起地层发生大变形、坍塌等现象.针对浅埋地铁隧道施工扰动下含空洞土岩复合地层的变形规律进行分析,研究结果表明:空洞的存在改变了地层变形分布规律,地表及土岩分界面沉降曲线分布形状及变化规律与空洞所处位置息息相关;隧道施工过程中地表沉降曲线...  相似文献   

2.
以北京某地铁盾构施工区间为研究对象,基于土体HSS本构模型,在砂土地层中,利用Plaxis 3D有限元软件,通过模拟结果与监测数据的对比分析,分析了双线隧道地表沉降变形规律以及开挖过程对管道的影响。结果表明,土体HSS本构模型在北京区域比较适用;后线隧道的开挖对先行隧道有较大影响,地表最大沉降出现在先行隧道上方;管道处沉降受双线盾构施工二次扰动的影响较其他部位地表大,施工时应格外关注。  相似文献   

3.
小转弯半径曲线盾构隧道施工引发的地表沉降变形规律极为复杂,但相应的变形预测解析公式仍未明确。依据前人研究成果,构建曲线段盾构隧道施工的地层损失模型,基于镜像法及Mindlin解,推导曲线盾构隧道开挖引发地表沉降的计算公式,并将其应用于工程实例计算,最后分析曲线盾构隧道施工引发地表变形规律及其影响因素。研究表明:构建的小转弯半径曲线段地层损失模型合理,推导所得公式适用于实际工程计算;地表纵向沉降在靠近刀盘3倍洞径范围内变化极大,刀盘前方3倍洞径范围内地表会产生轻微隆起,刀盘后方3~4倍洞径处出现最大沉降;地表横向沉降槽为非对称分布,最大沉降位置位于弯道内侧,距刀盘中心线约1倍洞径;地层损失引起的地表横向沉降大小主要受转弯半径及盾壳长度影响,地表横向沉降槽偏移程度主要由刀盘直径大小决定。  相似文献   

4.
地层空洞的存在使得隧道结构周围的地层环境变得更为复杂,在地铁隧道施工的影响下极易引起地表沉降加剧甚至地表坍塌。针对V级围岩地铁隧道,采用三维模型试验和数值模拟研究了不同位置地层空洞对地表沉降的影响规律以及空洞的变形特征,同时通过修正后的Peck公式对试验结果进行拟合分析。研究结果表明:空洞的存在使得地层损失加剧,地表沉降槽深度和宽度均有所增大,沉降槽曲线整体向空洞一侧偏移,通过修正后的Peck公式能较好地拟合出沉降曲线形态;从地表整体沉降形状上看,空洞上方一定范围内地表沉降较大,地表会出现明显的沉降盆形态;综合考虑空洞对地表沉降槽宽度和深度以及地层损失率的影响,认为空洞位于隧道斜上方是最不利位置,在施工过程中对这一方位地层空洞应重点关注;不同方位空洞的变形模式不同,主要表现为立式椭球体和卧式椭球体等变形模式。  相似文献   

5.
应用数值模拟方法,结合现场实测数据,对上软下硬地层中,双线隧道施工诱发地表沉降规律及其计算方法进行了研究。研究结果显示:双线隧道施工完成后,地表横向沉降曲线呈非对称分布,先行隧道上方的地表沉降量大于后行隧道上方的地表沉降量;双线隧道错距施工过程中,地表沉降曲线最大值位置由先行隧道上方逐步向后行隧道上方移动,沉降变形主要发生在后行隧道穿越监测断面之前。数值模拟正交试验结果显示,隧道埋深和隧道间距对施工过程中地表沉降影响较大,设计过程中,应充分考虑隧道埋深及隧道间距对地表沉降产生的影响。正交试验结果的非线性拟合分析结果显示,双线隧道施工诱发地表沉降计算公式中的i值与隧道开挖顺序无关,最大沉降量比γ直随隧道间距增加而轻微减小,当开挖错距在隧道开挖纵向影响范围内时,γ值变化不大。引入参数γ对双线隧道开挖地表沉降计算公式进行改进,并将改进后的地表沉降计算结果与实测结果进行对比,验证了该计算公式的正确性。  相似文献   

6.
结合京津城际延伸线解放路隧道工程实例,采用数值模拟和现场监测相结合方法,对软土地区盾构开挖对软黏土地层扰动的变化规律和盾构隧道地表沉降进行了研究。结果表明,地表沉降槽近似正态分布曲线。同时将数值计算所得盾构掘进过程中土体横、纵向地表沉降曲线与监测纵断面沉降曲线进行对比,证明了数值模拟技术在计算地表沉降中可行性,了解了实际施工过程中影响地表沉降因素,对指导天津地区盾构隧道的设计施工,以及安全防护都具有重要的意义。  相似文献   

7.
在临界状态理论和边界面模型的框架内,引入结构性扰动对弹性变形、结构性屈服面大小、胶结吸力和屈服面各向异性的影响,建立一个基于扰动状态概念硬化参量的结构性黏土边界面模型。首先,通过定义3个结构扰动度R_c,R_b和R_a来定量反映塑性变形对结构性黏土的结构性屈服面、胶结吸力和屈服面各向异性的扰动程度,并对弹性特性进行各向异性和结构性影响的修正。然后,通过对天然沉积上海黏土和Vallericca硬黏土的三轴不排水剪切试验和一维固结压缩试验的模拟验证模型的预测能力。最后,通过模型与有限差分法相结合,以简单的平面应变试验模拟为例,展示模型能够描述结构扰动度的变化及其在土体中分布的模拟能力。  相似文献   

8.
韦生达  姚佩仪  彭鑫  龚杰  吕岩  张书建 《建筑技术》2021,52(11):1331-1334
以成都高漂石含量砂卵石地层为研究对象,采用PFC2D模拟了双线隧道盾构掘进时对砂卵石地层的扰动规律,并通过Midas有限元模拟分析了双线隧道盾构掘进时的地表沉降规律.结果 表明砂卵石地层在掘进过程中将形成一个倒三角的松动区,并引起掌子面前方土体向此区域移动,最终形成楔形移动面;同一里程处隧道引起的地表沉降随着盾构推进呈增大趋势,根据监测数据显示,地表沉降规律与模拟结果基本一致;双线盾构施工时,左右两侧的地表沉降相互影响,最大沉降位置将随着开挖方向发生偏移,并呈中心轴线沉降量最大,两侧地表沉降亦呈现出基本对称分布的规律.  相似文献   

9.
李莹 《建筑技术开发》2022,(15):128-130
以深圳地铁12号线盾构下穿隧道为研究背景,通过数值模拟分析了盾构掘进过程中地层变形。较坚硬地层盾构下穿施工,地表沉降值不超过1 mm。既有隧道削弱了掘进对地表变形的影响,导致地表沉降曲线在既有隧道位置出现回升。  相似文献   

10.
小转弯半径曲线盾构隧道施工引发的地表沉降变形规律极为复杂,但相应的变形预测解析公式仍未明确.依据前人研究成果,构建曲线段盾构隧道施工的地层损失模型,基于镜像法及Mindlin解,推导曲线盾构隧道开挖引发地表沉降的计算公式,并将其应用于工程实例计算,最后分析曲线盾构隧道施工引发地表变形规律及其影响因素.研究表明:构建的小...  相似文献   

11.
江海宇  王霞 《市政技术》2020,(6):130-134
随着城市轨道交通建设的不断加速,地铁下穿建(构)筑物的情况越来越多。地铁施工对地层产生较大扰动,地层应力重新分布引起地层沉降变形,若附加内力和变形超限将导致隧道坍塌甚至引起周边建(构)筑物倒塌。在充分认识各城市间地层、地质情况差异,特别是穿越繁华闹市区、重要老旧建筑或历史风貌建筑条件下,采取合理有效的洞内和地表控制措施显得尤为重要。采用FLAC2D数值模拟方法,分析了地表控制井点降水和洞内全断面注浆技术对地层沉降变形的影响和措施的有效性,通过施工方案模拟和实施,最终实现了隧道安全顺利地穿越老旧建筑群。  相似文献   

12.
《土工基础》2017,(4):383-386
地铁隧道下穿既有高速公路施工中,往往造成较大地表变形。依托深圳地铁7号线下穿广深高速工程,通过数值计算分析并与监测数据结果相对比,得出了施工过程中引起的地层沉降变化规律:沉降槽截面大致呈正态曲线分布,当隧道间距小于1.0 D时,双线隧道开挖引起的路面面沉降槽呈现单凹槽"V"形,而非双凹槽"W"形;隧道与路面呈一定角度时,隧道衬砌可能受偏压作用;全断面注浆可以很好的控制地层最终变形,但施工过程中会造成地层的隆起,施工工程中应加以注意。综合数值模拟和监控量测技术可以掌握围岩变形情况,采取及时的措施对变形量加以控制。  相似文献   

13.
解洋 《低温建筑技术》2023,(11):151-154
上软下硬地层大断面隧道受力结构复杂,分步开挖对围岩扰动大、风险高。为分析大断面隧道开挖受力特性,探寻分步开挖变形规律,利用MIDAS/GTS NX岩土分析软件建立三维有限元模型,对隧道开挖过程中地表沉降、隧道收敛、锚杆轴力、初支应力受力特性进行研究。通过分析得出,上软下硬地层大断面隧道开挖地表沉降主要发生在上台阶施工阶段,上台阶开挖引起的地表沉降占总体沉降量的97%;硬岩地层大断面开挖台阶间距对地表沉降、隧道收敛、初支结构受力影响不大。研究成果可为上软下硬地层大断面隧道开挖提供借鉴和参考。  相似文献   

14.
结合上海轨道交通14号线静安寺车站工程,基于颗粒间应变(IGS)小应变刚度本构模型对顶管顶进过程进行了三维数值模拟。通过对比现场实测及既有工程经验,验证了数值模型的有效性。利用数值模拟,分析了软黏土地层中矩形顶管施工地层变形响应。主要结论包括:(1)基于IGS小应变本构模型的数值模拟可以合理反映矩形顶管顶进引起地表沉降特征;(2)顶管施工引起地表沉降形态可以通过高斯曲线表征,随着顶管顶进,沉降槽宽度系数变小;(3)土体深层水平位移呈“S”形分布,在隧道顶部所在深度,土体具有最大的远离隧道的侧向位移和沿顶进方向的水平位移,在隧道底部所在深度,土体具有最大的朝向隧道的侧向位移及沿顶进反方向的水平位移。  相似文献   

15.
类矩形盾构隧道开挖使土体以不均匀沉降形式作用于地下管线,导致管线产生纵向变形、破坏。针对类矩形盾构隧道施工,采用室内缩尺寸模型试验,综合考虑管隧相对位置、管线埋深及土体损失率3个影响因素,研究类矩形盾构隧道在砂土地层中施工,地下管线沉降、变形及地表沉降的规律变化。研究结果表明:管隧垂直工况时,管线竖向位移曲线呈高斯分布,竖线位移反弯点出现在隧道轴线附近处,管线弯矩呈"M"型分布,最大竖向位移及弯矩位于隧道轴线正上方;管隧斜交工况所受影响比管隧垂直工况影响更大;管线埋深越大,管线受影响程度越深;管线竖向位移随土体损失率减小相应降低,隧道轴线正上方管线竖向位移与管线最大正弯矩及两个较大负弯矩减小幅度较大,管线两端受影响程度较小;地表沉降受土体损失影响较大,沉降值比管线大。  相似文献   

16.
受边界条件的制约,浅埋隧道开挖引起地表沉降的解析式中大多包含地层损失,地层损失不仅是地表沉降的诱因,又是时间的函数。针对这一现象,提出了地层损失随时间变化的模型,结合三维空间的萨格塞塔解,给出了预测浅埋隧道地表沉降随时间及施工参数变化的新型表达式。通过算例,分析了施工方法、开挖速度、台阶间距及解析模型中地表沉降速度系数对地表沉降的影响特征,结果表明:相向施工时,地表沉降速率先增大后减小,背向施工时,地表沉降速率逐渐减小;开挖速度对地表沉降的路径有较大影响,但不改变沉降的终值;隧道分部开挖时,台阶间距为隧道直径的2~3倍,相互影响较大,大于这个区间之间几乎没有影响;地表沉降速度系数不影响地表沉降的终值,仅改变沉降路径。最后,通过工程案例验证了解析式可靠性。  相似文献   

17.
郑爱元 《四川建材》2019,(9):165-166
城市地铁隧道建设打破了原有地层的初始应力平衡状态,导致地层变形,对既有建(构)筑物产生重要的影响。地层变形预测常采用Peck公式计算盾构隧道施工诱发地层变形量,本文基于组合梁简化模型,通过理论推导,提出了一种地铁隧道地表沉降计算方法,并与现场监测数据、Peck曲线进行了对比,验证了组合梁简化模型的可靠性。  相似文献   

18.
为研究节理岩体对盾构隧道开挖稳定性和地层损失率的影响,以南昌某盾构隧道为研究对象,采用离散元软件UDEC建立数值模型,分析节理倾角对围岩变形和地表沉降的影响规律,通过拟合得到地层损失率,并将模拟值与实测值进行对比,研究节理间距、盾构隧道间距以及隧道埋深对地表沉降的影响规律。研究结果表明:盾构隧道围岩在节理面产生较大位移,节理倾角的存在导致隧道围岩产生偏压现象,节理倾角为60°、90°时容易失稳;当节理倾角为60°时,地表沉降取得最大值,当节理倾角为45°时,地表沉降取得最小值。通过拟合Peck曲线可知,该工程区段的地层损失率范围为0.658%~0.896%;地表沉降值与隧道埋深、隧道间距以及节理间距均成负相关。  相似文献   

19.
 广州市轨道交通6#线东山口站左线站台隧道采用盾构先行过站后扩挖方案修建,地面环境复杂,且建筑物桩基所处地层含水量高、孔隙比大,盾构隧道扩挖施工易引起较大地面沉降。应用数值模拟方法对扩挖施工诱发地层失水引起的地表沉降以及现场扩挖施工变形控制措施的实施效果进行预测,并且运用叠加原理将得到的最终地表沉降与实测数据进行对比分析。结果显示:地层失水沉降及扩挖施工沉降比例为2∶3;盾构隧道台阶法扩挖上台阶施工地表沉降量较大,两台阶两部与两台阶四部扩挖法地表沉降差别不大,盾构扩挖法修建左线站台隧道最大地表沉降为右线CRD法站台隧道的65%;拱部大管棚、袖阀管注浆复合超前预支护增加了地表沉降槽宽度,减小了地表沉降量及倾斜;盾构轴线偏移方案减小了围岩塑形区范围,更好地发挥拱部超前预支护的效果。  相似文献   

20.
目前,有些黄土公路隧道受到地形限制只能采取小净距隧道形式,为了更好地解决彼此开挖相互受影响带来的安全隐患问题,笔者开展了6组基于先加载后开洞思路的离心模型试验,研究了不同净距和间距的组合下双洞效应黄土公路隧道地表及地层的变形规律。试验结果表明:间距保持1D时,随着净距的增大,双洞间的相互影响程度明显减弱,先行洞开挖对后行洞的次生扰动逐级递减;地表沉降轮廓由单核心盆地演变为多核心盆地,地层变形曲线从V形发展为W形;压力拱效应明显且成拱高度随两隧体净距的增加而升高。间距变为2D时,无论净距如何取值,地表和地层沉降的最大值都会在右侧隧道中心线附近出现,右侧隧道上覆土体变得更为敏感。净距2D间距2D时,地表和地层沉降均在右侧先行隧道拱顶上方出现6组工况下的最大沉降值,评定为最不利工况;间距1D净距取1.5D和2D时,两隧体间均可形成自稳的宽底承载土柱体。因此,小净距黄土公路隧道合理净距取值范围为1.5D~2D,相应的掌子面间距宜控制在1D内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号